Se em algum momento da sua vida, você já estudou as famosas leis de Newton que regem a mecânica clássica, então já ouviu falar de massa. Mesmo quem não tem conhecimentos formais em Física costuma usar esta grandeza o tempo todo, ela basicamente diz quão “pesado” um corpo é e permite que você vá a feira e compre “1 kg de laranjas”. Mas sabia que teoricamente existem dois tipos de massa na Física?
O primeiro tipo, chamado “massa inercial” vem da segunda lei de Newton. Quando Newton diz que “Força é massa vezes aceleração” (F = m.a), está implicitamente definindo que existe uma propriedade dos corpos chamada massa, que indica quão resistente a mudar de velocidade ele é. Corpos mais massivos precisam de mais força que corpos menos massivos para atingir a mesma aceleração e isto é uma característica do corpo estudado.
O segundo tipo, conhecido como “massa gravitacional”, como o nome sugere, está relacionado à gravidade. Este diz quão forte será uma interação gravitacional de um corpo, assim como a carga elétrica faz para forças elétricas.
Perceba, são conceitos diferentes e aparentemente desconexos. Porém, por algum motivo, a natureza faz com que o valor numérico destas duas quantidades seja exatamente igual. Isto é conhecido há muito tempo, pois caso os valores fossem diferentes a aceleração de objetos caindo na Terra dependeria da massa, o que sabemos ser falso desde os tempos de Galileu.
Esta constatação, aparentemente básica, é importantíssima e aparenta ter motivos não triviais de existir, o que pode dar dicas para a construção de novos modelos teóricos de gravitação. Por exemplo, a Relatividade Geral usa esta equivalência para dizer que corpos com massa distorcem o espaço-tempo e a aparente interação gravitacional é resultado do corpo tentar se mover em linha reta (visto que não há mais o conceito de força gravitacional) em um espaço-tempo curvo.
Uma pergunta que também surge desta constatação é: Como antipartículas interagem gravitacionalmente? Sabemos que antipartículas têm cargas opostas em relação às suas respectivas partículas. Será que uma interação gravitacional entre partículas e antipartículas poderia ser repulsiva? É importante lembrar que a teoria de gravitação de Newton prevê que toda interação gravitacional seria atrativa, será que neste caso seria diferente?
Interações gravitacionais são muito fracas em relação aos demais tipos de interação, o que faz com que suas medidas em Física de partículas sejam muito difíceis. Atualmente não sabemos como antipartículas interagem gravitacionalmente. A tendência da comunidade científica é acreditar que a massa gravitacional das antipartículas seja positiva e, portanto, que elas interajam de forma equivalente às partículas. Porém, somente um experimento pode confirmar isto.
Muitas definições básicas, como o caso das massas inercial e gravitacional, passam despercebidas enquanto estudamos Física, mas é fundamental saber bem estas definições para ter uma boa noção de como a natureza funciona e principalmente para criar novos modelos que sejam consistentes com a realidade. Qual será a explicação final para que essas grandezas sejam equivalentes?
Não é necessário as forças serem equivalentes para que corpos pesados e corpos leves caiam ao mesmo tempo, basta serem proporcionais. Quanto ao mistério das forças serem iguais, (para mim permanece realmente um mistério) o princípio da equivalência de Einstein não o resolve, como se propaga por aí.
Mas eu vejo uma coisa curiosa que não vejo ninguém falar: as forças ou massas gravitacional e inercial só são iguais aqui no planeta Terra e próximo da superfície. Se formos por exemplo para Júpiter ou para a Lua, certamente são muito diferentes, pois as forças gravitacionais são muito diferentes, enquanto a massa inercial de um corpo continua a ser a mesma em qualquer parte do Universo.