

Neutrino Astronomy: detectors, techniques, and status

Carlos Argüelles

São Paulo Advanced School on Multi-Messenger Astrophysics Instituto Principia

The objective of this lecture series

The objective of this lecture series

Data Releases

Featured Releases

On July 12, 2018, the IceCube Collaboration together with partner telescopes and observatories announced the first evidence of a source of high-energy cosmic neutrinos. The results were presented in two papers published in Science. The first paper provided an analysis of the neutrino alert event IceCube-170922A in coincidence with electromagnetic observations of the blazar TXS 0506+056. The second paper presented an analysis of IceCube neutrino point source data in the direction of TXS 0506+056 prior to the alert event. Together these results allowed the identification of this blazar as the first likely source of high-energy neutrinos and cosmic rays.

Download: IceCube data from 2008 to 2017 related to analysis of TXS 0506+056

Download: IceCube catalog of alert events up through IceCube-170922A

Data Use Policy

IceCube is committed to the goal of releasing data to the scientific community. The following links contain data sets produced by AMANDA/IceCube researchers along with a basic description. Due to challenging demands on event reconstruction, background rejection and systematic effects, data will be released after the main analyses are completed and results are published by the international IceCube Collaboration.

For more information on IceCube's policy on data sharing, see the <u>Governance Document</u>, Appendix E: Dissemination and Sharing of IceCube Research Results and Data.

Download Data Sets

The pages below contain information about the data that were collected and links to the data files.

Cardápio

- 1. Why high-energy neutrino astrophysics?
- 2. Some history: the road to discovery
- 3. Signature, backgrounds, and particle physics
- 4. Discovery of high-energy astrophysical neutrinos
- 5. Statistics interlude
- 6. What do we know about neutrino sources?
- 7. Neutrino oscillation interlude
- 8. Particle physics with high-energy neutrinos
- 9. Near future and final remarks

Motivation

the birth of neutrino astronomy: supernova 1987A

origin of cosmic rays: oldest problem in astroparticle physics

cosmic-ray challenge

both the energy of the particles and the *luminosity* of the accelerators are large

gravitational energy from collapsing stars is converted into particle acceleration?

highest energy radiation from the Universe: protons!

high energy high luminosity

LHC accelerator should have circumference of Mercury orbit to reach 10²⁰ eV!

Courtesy M. Unger

Fly's Eye 1991 300,000,000 TeV

v and γ beams : heaven and earth

proton • accelerator • target directional beam p, e[±] magnetic fields

accelerator is powered by large gravitational energy

* supermassive black hole

nearby radiation

 $p + \gamma \rightarrow n + \pi^+$

~ cosmic ray + neutrino

~ cosmic ray + gamma

The opaque Universe

$\gamma + \gamma_{CMB} \rightarrow e^+ + e^-$

PeV photons interact with microwave photons (411/cm³) before reaching our telescopes enter: neutrinos

p

highest energy "radiation" from the Universe: neutrinos and cosmic rays

Universe is opaque above ~100 TeV energy

Neutrinos? Perfect Messenger

- electrically neutral
- essentially massless
- essentially unabsorbed
- tracks nuclear processes
- reveal the sources of cosmic rays

... but difficult to detect: how large a detector?

cosmic-rays interact with the microwave background

$$p + \gamma \rightarrow n + \pi^+ and p + \pi^0$$

cosmic rays disappear, neutrinos with EeV (10⁶ TeV) energy appear

$$\pi \rightarrow \mu + \upsilon_{\mu} \rightarrow \{ e + \overline{\upsilon_{\mu}} + \upsilon_{e} \} + \upsilon_{\mu}$$

1 event per cubic kilometer per year ...but it points at its source!

M. Markov 1960

B. Pontecorvo

M.Markov : we propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

DUMAND: Deep Underwater Muon and Neutrino Detector (1973-1995)

Art Roberts, Rev.Mod.Phys. 64 (1992) 259-312 Christian Spiering and Uli Katz, Prog.Part.Nucl.Phys. 67 (2012) 651-704

DUMAND: Deep Underwater Muon and Neutrino Detector (1973-1995)

model. See text for details (Roberts and Wilkins, 1978).

Art Roberts, Rev.Mod.Phys. 64 (1992) 259-312 Christian Spiering and Uli Katz, Prog.Part.Nucl.Phys. 67 (2012) 651-704

Baikal Neutrino Telescope (1993-1996)

Art Roberts, Rev.Mod.Phys. 64 (1992) 259-312 Christian Spiering and Uli Katz, Prog.Part.Nucl.Phys. 67 (2012) 651-704

AMANDA: Antarctic Muon And Neutrino Detection Array (1993-2008)

ANTARES: Astronomy with a Neutrino Telescope and Abyss environmental RESearch (2002 - present)

That is all the history I am going to cover, but these are nice and fun reads

Art Roberts, Rev.Mod.Phys. 64 (1992) 259-312 Christian Spiering and Uli Katz, Prog.Part.Nucl.Phys. 67 (2012) 651-704 Christian Spiering European Physics Journal H, 2012

Towards High-Energy Neutrino Astronomy

A Historical Review

Christian Spiering^a

DESY, Platanenallee, D-15738 Zeuthen

Abstract. The search for the sources of cosmic rays is a three-fold assault, using charged cosmic rays, gamma rays and neutrinos. The first conceptual ideas to detect high energy neutrinos date back to the late fifties. The long evolution towards detectors with a realistic discovery potential started in the seventies and eighties, with the pioneering works in the Pacific Ocean close to Hawaii and in Lake Baikal in Siberia. But only now, half a century after the first concepts, such a detector is in operation: IceCube at the South Pole. We do not yet know whether with IceCube we will indeed detect extraterrestrial high energy neutrinos or whether this will remain the privilege of next generation telescopes. But whatever the answer will be: the path to the present detectors was a remarkable journey. This review sketches its main milestones.

http://neutrinohistory2018.in2p3.fr/

IceCube detection principles and reconstruction techniques

The IceCube experiment

Digital Optical Module (DOM)

We describe interactions in terms of "exchange particles"

time

We use the outgoing particle to classify the neutrino. We term this neutrino "flavor."

All charge-current Interactions

W+

e

 $V_{e^{\sim}}$

Events can start in the detector or below it (throughgoing). Events must be contained or partially contained in the detector.

Events must be contained in the detector.

W+

All event morphologies

Charged-current v_{μ}

Neutral-current / ve

Charged-current v $_{\tau}$

(simulation)

Up-going track

Factor of ~2 energy resolution < 1 degree angular resolution

Isolated energy deposition (cascade) with no track

15% deposited energy resolution 10 degree angular resolution (above 100 TeV) Double cascade

(resolvable above ~100 TeV deposited energy)

neutrino detection probability

neutrino detection probability

neutrino detection probability

neutrino survives

$$e^{-rac{L}{\lambda_v}}$$

TAS

neutrino detected

for
$$v_{\mu} \quad L \rightarrow R_{\mu} \left[E_{\mu} = (1 - y) E_{\nu} \right]$$

for $v_{\tau} \quad L \rightarrow \left(E_{\tau} / m_{\tau} \right) c \tau_{\tau}$

$$P_{det} = n\sigma_v L$$
neutrino detection probability

neutrino survives

$$e^{-rac{L}{\lambda_v}}$$

neutrino detected

Total neutrino cross section

Relevant neutrino interactions

Neutrino-nucleon scattering at these energies is dominated by "deep inelastic scattering" (DIS) where the neutrino interacts with a parton in the nucleon.

Relevant neutrino interactions

Neutrino-nucleon scattering at these energies is dominated by "deep inelastic scattering" (DIS) where the neutrino interacts with a parton in the nucleon.

Uncertainties on DIS interactions

Resonant-W production aka Glashow resonance

Resonant-W production aka Glashow resonance

 5.02×10^{-31} $\bar{\nu}_e e \rightarrow \text{anything}$ Cross-Section (cm²) 10⁻³² Mesons Muons W 10 $\bar{\nu}_e e^- \rightarrow \bar{\nu}_e e$ 10⁻³⁸ 10⁻³ Hadronic Cascade $\bar{\nu}_{e}$ $\bar{\nu}_{\mu}e^{-} \rightarrow \bar{\nu}_{\mu}e^{-}$ 10⁻³⁷ 10¹⁶ 10¹⁸ 10¹⁷ 10¹⁴ 10¹⁵ 10¹³ Neutrino Energy (eV) $\frac{d\sigma(\bar{\nu}_e e^- \to \bar{\nu}_e e^-)}{dy} = \frac{2G_F^2 m_e E_\nu}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \left| \frac{g_L}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu /M_W^2} + \frac{1}{1-2m_e E_\nu /M_W^2} \right|^2 \right]$

> In the Earth only present for anti-electron neutrinos: this process is important for flavor identification and nu to nubar ratio

Resonant-W production aka Glashow resonance

W⁺ DECAY MODES

$$\frac{d\sigma(\bar{\nu}_e e^- \to \bar{\nu}_e e^-)}{dy} = \frac{2G_F^2 m_e E_\nu}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + |\frac{g_L}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} |^2 \right] = \frac{2G_F^2 m_e E_\nu}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{g_L}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} \right] = \frac{1}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{g_L}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} \right] = \frac{1}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{g_L}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} \right] = \frac{1}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{1}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} \right] = \frac{1}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{1}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} \right] = \frac{1}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{1}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1-2m_e E_\nu/M_W^2} \right] = \frac{1}{\pi} \left[\frac{g_R^2}{(1+2m_e E_\nu y/M_Z^2)^2} + \frac{1}{1+2m_e E_\nu y/M_Z^2} + \frac{1}{1-2m_e E_\nu/M_W^2} + \frac{1}{1+2m_e E_\nu} +$$

In the Earth only present for anti-electron neutrinos: this process is important for flavor identification and nu to nubar ratio

Technical note: electrons are not in empty space

Z	$\sigma(E_R)/\sigma^{(0)}(E_R)$
8	0.85
12	0.83
14	0.78
20	0.76
26	0.73

Figure 1: Scaled cross sections of the WR on electrons at rest and electrons in Z = 26.

Loewy et al. arXiv:1407.4415

Technical note: other corrections to the GR cross section

What about flavor dependence?

High-energy DIS approximations

$$\sigma_{\nu N}^{CC} = 5.53 \times 10^{-36} \text{ cm}^2 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{\alpha}, \qquad \alpha \simeq 0.363$$
$$\sigma_{\nu N}^{NC} = 2.31 \times 10^{-36} \text{ cm}^2 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{\alpha}$$

```
10^{16} \text{ eV} \le E_{\nu} \le 10^{21} \text{ eV}
```

48

neutrino detection probability

neutrino survives L Λ_{V} e **V**_e μ T

neutrino detected

for
$$v_{\mu} \quad L \rightarrow R_{\mu} \left[E_{\mu} = (1 - y) E_{\nu} \right]$$

for $v_{\tau} \quad L \rightarrow \left(E_{\tau} / m_{\tau} \right) c \tau_{\tau}$

TAS

$$P_{det} = n\sigma_v L$$

In-class exercise

Given the neutrino cross section is approximately

$$\sigma_{\nu N}^{CC} = 5.53 \times 10^{-36} \text{ cm}^2 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{\alpha}, \qquad \alpha \simeq 0.363$$

$$\sigma_{\nu N}^{NC} = 2.31 \times 10^{-36} \text{ cm}^2 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{\alpha} \qquad 10^{16} \text{ eV} \le E_{\nu} \le 10^{21} \text{ eV}$$

Assuming that the Earth mean density is 5 g/cm³, what is the neutrino interaction length at 100 TeV?

Neutrino interaction length

10¹⁷

 10^{16}

 10^{15}

Shadow factor

For isotropic astrophysical neutrino fluxes the "zenithaveraged" attenuation is more relevant.

A story of neutrinos through the Earth

How to account for neutrinos cascading down

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = - \left(\sigma_{\nu_{\ell}}^{\rm NC}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\rm CC}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}}$$

 $x(\theta) \equiv N_a \int_{l.o.s.} \rho_{\oplus}[r(x,\theta)]dx$

How to account for neutrinos cascading down

contribution from neutrinos cascading down

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = -\left(\sigma_{\nu_{\ell}}^{\rm NC}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\rm CC}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\rm NC}(E_{\nu}, E_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\rm NC}(E_{\nu}, E_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{E}_{\nu}, x)}}{d\tilde{E}_{\nu}} \frac{d\phi_{\nu}}(\tilde{$$

 $x(\theta) \equiv N_a \int_{l.o.s.} \rho_{\oplus}[r(x,\theta)]dx$

How to account for neutrinos cascading down

contribution from neutrinos cascading down

$$\frac{\partial}{\partial x} \left(\frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} \right) = -\left(\sigma_{\nu_{\ell}}^{\rm NC}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\rm CC}(E_{\nu}) \right) \frac{d\phi_{\nu_{\ell}}(E_{\nu}, x)}{dE_{\nu}} + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma_{\nu_{\ell}}^{\rm NC}(E_{\nu}, E_{\nu})}{dE_{\nu}} \frac{d\phi_{\nu_{\ell}}(\tilde{E}_{\nu}, x)}{d\tilde{E}_{\nu}}$$

Effect of secondaries is small unless you have a very hard spectrum

Angular view of Earth absorption

Could you measure the Earth using this effect?

Yes, you can measure the Earth mass and profile with neutrinos

Yes, you can measure the Earth mass and profile with neutrinos

60

neutrino detection probability

neutrino survives

$$e^{-\frac{L}{\lambda_v}}$$

neutrino detected

for
$$v_{\mu} \quad L \rightarrow R_{\mu} \left[E_{\mu} = (1 - y) E_{\nu} \right]$$

for $v_{\tau} \quad L \rightarrow \left(E_{\tau} / m_{\tau} \right) c \tau_{\tau}$

$$P_{det} = n\sigma_v L$$

Muon losses and ranges

Muon losses and ranges

Mean energy losses are well described by

$$-\frac{dE}{dx} = \left(\frac{dE}{dx}\right)_I + \left(\frac{dE}{dx}\right)_B + \left(\frac{dE}{dx}\right)_P + \left(\frac{dE}{dx}\right)_N$$

$$-\frac{dE}{dx} = a_I(E) + b(E) \cdot E$$

with $b(E) = b_B(E) + b_P(E) + b_N(E)$

Mean muon range

$$x_f = \log(1 + E_i \cdot b/a)/b$$

medium	$a, \frac{\text{GeV}}{\text{mwe}}$	$b, \frac{10^{-3}}{\text{mwe}}$
ice	0.268	0.470

Tau vs muon ranges

Putting everything together: the neutrino and muons effective area

$$events = A_{v} \times \Phi_{v}$$
$$= A_{\mu} \times P_{v \to \mu} \times \Phi_{v}$$
$$P_{v \to \mu} = \lambda_{\mu} / \lambda_{v} = R_{\mu} n \sigma_{v} \approx 10^{-6} E_{TeV}$$

$$A_{v} \rightarrow A_{v} = P_{v \rightarrow \mu} P_{survival} A_{\mu}$$

Neutrino telescope effective area at 100 TeV

area
$$\times P_{\mu \to \nu} \left(= \frac{\lambda_{\mu}}{\lambda_{\nu}} = nR_{\mu}\sigma_{\nu} \simeq 10^{-6} E_{TeV} \right)$$

- AMANDA ~ ANTARES ~ (1- 5) m²
- IceCube 86 strings ~ 100 m²

The neutrino effective area is the size of the neutrino telescope

SAO director Fred Lawrence Whipple (middle) at the 10-m Gamma Ray Reflector on the day the 'Mount Hopkins Observatory' opened its doors in 1968

IceCube is comparable to a 10 m gamma-ray telescope

Typical IceCube's All-sky effective areas

Typical IceCube's Differential effective areas

In-class exercise: Event Rate Estimation

Assuming that the effective area is given by

$$A_{eff}(E_{\nu}) = 10\mathrm{m}^2 \left(\frac{E}{10\mathrm{TeV}}\right)^{0.8}$$

And the astrophysical flux is given by

$$\phi_{astro}(E_{\nu}) = 10^{-18} \left(\frac{E_{\nu}}{100 \text{TeV}}\right)^{-2} \text{cm}^{-2} \text{s}^{-1} \text{GeV}^{-1} \text{sr}^{-1}$$

How many (all-sky) events do you expect from 10 TeV to 10 PeV in 10 years?

Reconstructing events in the ice (or in water)

Cherenkov cone and track reconstruction

Fig. 14.14 Cherenkov radiation. Spherical wavelets of fields of a particle traveling less than, and greater than, the velocity of light in the medium. For v > c, an electromagnetic "shock" wave appears, moving in the direction given by the Cherenkov angle θ_c .

$$\cos \theta_{\rm c} = (n \cdot \beta)^{-1}$$
 $n \simeq 1.32$ $\theta_{\rm c} \approx 41^{\circ}$

Cherenkov cone and track reconstruction

 $\cos \theta_{\rm c} = (n \cdot \beta)^{-1}$ $n \simeq 1.32$ $\theta_{\rm c} \approx 41^{\circ}$

Muon with Cherenkov cone

Muon reconstruction with direct photons

Remember our muon losses discussion

e⁺e⁻ photo-nuclear γ pair-creation bremsstrahlung

> Losses are dominated by *stochastic* process...

> > what does that imply?

Stochastic behavior of muon losses

Figure 3.12: Stochastic character of muon energy loss The picture shows distributions of the final energy of 1000 simulated muons (initial energy 1TeV) after passing (A) 50m and (B) 1500m of fresh water, simulated with GEANT (section 6.2)

Muon tracks with charged secondaries

Figure 3.13: Typical muon tracks and charged secondaries above the Čerenkov threshold for different energies in two zoom levels.

Muon tracks with charged secondaries

Figure 3.13: Typical muon tracks and charged secondaries above the Čerenkov threshold for different energies in two zoom levels.

Muon tracks with charged secondaries

Figure 3.13: Typical muon tracks and charged secondaries above the Čerenkov threshold for different energies in two zoom levels.

Absorption length in ice

Scattering length in ice

Muon in ice

Type: NuMu E(GeV): 1.21e+03 Zen: 73.90 deg Azí: 258.85 deg NTrack: 1/1 shown, max E(GeV) == 1206.72 NCasc: 68/68 shown, max E(GeV) == 1.42

Muon in sea water

Type: NuMu E(GeV): 1.21e+03 Zen: 73.90 deg Azi: 258.85 deg NTrack: 1/1 shown, max E(GeV) == 1206.72 NCasc: 68/68 shown, max E(GeV) == 1.42

Why is this a difficult problem?

Type: E(GeV): Zen: Azí: NTrack: NCasc:	NuMu 6.08e+04 44.43 deg 357.53 deg 100/446 sho 100/444 sho	own, max E(own, max E(GeV) == 56675 GeV) == 1.58		

An incomplete information challenge

Emitted

Muon angular resolution

ANTARES, IceCube, Auger, and TA, arXiv:2201.07313

Mean deviation angle between muon and neutrino

$$\psi = 0.7^{\circ} \times (E_{\nu}/\text{TeV})^{-0.7}$$

Muon energy resolution

Why is this so bad? Can we improve?

Cherenkov front and cascade reconstruction

Electromagnetic cascades longitudinal

Cascades transverse

Cascade in ice

1 TeV

Cascade in water

AMANDA holeice camera

Subtle local ice effects are important

Hole-ice

 Refrozen central column with high scattering DOM orientation

- Thick, support cable may impede direct photons if vertex is nearby
- A few DOMs may not be perfectly horizontal

Looking up the string

Subtle local ice effects are important

Prometheus: An Open-Source Solution to Neutrino Telescope Simulation

https://github.com/Harvard-Neutrino/prometheus

https://github.com/Harvard-Neutrino/prometheus

https://github.com/Harvard-Neutrino/prometheus

https://github.com/Harvard-Neutrino/prometheus

Improvements with Machine Learning

Examples from IceCube, but true across the board

That potential is growing: New Reconstructions

Felix Yu

Jeffrey Lazar

That potential is growing: New Reconstructions

Miaochen (Andy) Jin

If all the IceCube data were processed by GPUs, they would use, on average, the power of **18 households**, whereas a TPU would use **only 1% of this energy.**

Neutrino Telescopes In the Quantum Computer Era

- Quantum encoding allows for compression (16qbits).
- Can store a typical IceCube event in 8 qubits and all google drive contents in 44 qubits.
- Protocol allows for contextual access to the data: can retrieve the relevant parts of information efficiently.

J. Lazar, S. Giner, G. Gatti, CA, and M. Sanz (2022) in preparation

Current number encoding e.g.:

Int32	000000000000000000000000000000000000000
UInt32	000000000000000000000000000000000000000
Float32	010000010100000000000000000000000000000

Quantum digital encoding:

Store the information in the correlation between spins (parity states):

bit	1	1	1	1	1	0	1	0	0
O	XX	XY	XZ	YX	YY	YZ	ZX	ZY	ZZ
λ	-1	1	-1	1	-1	1	-1	1	-1

Let's think how this technology will help us ten years down the road!

Atmospheric backgrounds

10 msec of IceCube data

- Atmospheric $\mu \sim 10^{11}$ (3000 per second)
- Atmospheric* $\nu \rightarrow \mu \sim 10^5$ (1 every 6 minutes)
- Cosmic^{**} $\nu \rightarrow \mu \sim 10^2$

The Cosmic-Ray Spectra

Atmospheric neutrinos production

conventional (from longer-lived hadrons) $p, A + air \rightarrow \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}_{S,L}$

muons and muon neutrinos

 $\pi^{\pm}, K^{\pm} \to \mu^{\pm} \nu_{\mu}(\bar{\nu}_{\mu})$

electron neutrinos

$$K^{\pm}, K_L^0 \to [\pi^{\pm}, \pi^0] e^{\pm} \nu_e(\bar{\nu}_e)$$

prompt (from rare short-lived hadrons)

$$p, A + \operatorname{air} \to D, \Lambda_{\mathrm{C}} \to \nu_{\mu}, \nu_{\mathrm{e}}, \mu$$

Subset of dominant decay channels

decay channel	branching ratio (BR)			
$\mu^- \to e^- \bar{\nu}_e \nu_\mu$	100 %			
$\pi^+ o \mu^+ \nu_\mu$	99.9877 %			
$K^0_{e3}: K^0_L \to \pi^\pm e^\mp \nu_e$	40.55 %			
$K^0_{\mu 3}: K^0_L \to \pi^{\pm} \mu^{\mp} \nu_{\mu}$	27.04 %			
$K^+ \to \mu^+ \nu_\mu$	63.55 %			
$K_{e3}^+:K^+\to\pi^0e^+\nu_e$	5.07 %			
$K^+_{\mu3}: K^+ \to \pi^0 \mu^+ \nu_\mu$	3.353 %			
$D^+ \to \overline{K}^0 \mu^+ \nu_\mu$	9.2 %			
$D^0 \to K^- \mu^+ \nu_\mu$	3.3 %			
+ charge conjugates	http://pda.lbl.gov			

System of coupled non-linear PDE for each particle species h :

$$\begin{split} \frac{\mathrm{d}\Phi_h(E,X)}{\mathrm{d}X} &= -\frac{\Phi_h(E,X)}{\lambda_{\mathrm{int},h}(E)} & \text{Interactions with air} \\ &- \frac{\Phi_h(E,X)}{\lambda_{\mathrm{dec},h}(E,X)} & \text{Decays} \\ &- \frac{\partial}{\partial E}(\mu(E)\Phi_h(E,X)) & \text{Continuous losses} \\ &+ \sum_k \int_E^\infty \mathrm{d}E_k \; \frac{\mathrm{d}N_{k(E_k) \to h(E)}}{\mathrm{d}E} \frac{\Phi_k(E_k,X)}{\lambda_{\mathrm{int},k}(E_k)} & \mathrm{d}E_k \\ &+ \sum_k \int_E^\infty \mathrm{d}E_k \; \frac{\mathrm{d}N_{k(E_k) \to h(E)}}{\mathrm{d}E} \frac{\Phi_k(E_k,X)}{\lambda_{\mathrm{dec},k}(E_k,X)} & \mathrm{d}E_k \end{split}$$

Re-injection from interactions

Re-injection from decays

$$X(h_0) = \int_0^{h_0} \,\mathrm{d}\ell \,\,\rho_{\mathrm{air}}(\ell)$$

p

π

System of coupled non-linear PDE for each particle species h :

p

System of coupled non-linear PDE for each particle species *h* :

System of coupled non-linear PDE for each particle species h :

Relationship between primary and secondary particles

Muon-neutrino flux

https://github.com/afedynitch/MCEq

CORSIKA: A. Fedynitch, J. Becker Tjus and P. Desiati, PRD 2012 MCEq: A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn and S. Todor. PoS ICRC 2015, 1129 MCEq: Code paper, AF, R. Engel, in prep. for submission

Electron-neutrino flux

total	other prompt	<u></u> К±	— D±	Λ _c	$$ μ decay
•••• total conv.	other conv.	— K ⁰ _S	D ⁰	— unflavored	τ
– total prompt	π	— K ⁰	— D _s		

CORSIKA: A. Fedynitch, J. Becker Tjus and P. Desiati, PRD 2012 MCEq: A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn and S. Todor. PoS ICRC 2015, 1129 MCEq: Code paper, AF, R. Engel, in prep. for submission

Two prone hunt of astrophysical neutrinos

Challenges:

Astrophysical neutrino flux is very small Large atmospheric neutrino and muon backgrounds

Challenges:

Astrophysical neutrino flux is very small Large atmospheric neutrino and muon backgrounds

Strategy One: look at the Northern Sky

Strategy:

- Use the Earth to block the large atmospheric muon flux
- Look at the highest energy where the atmosphric neutrino flux
 is smallest

8 years of northern-sky neutrinos show consistent excess over atmospheric background

Strategy Two: Use the

This event selection contains some of the highest energy neutrinos ever observed

early

Color indicates time (red earlier, green later) Sphere sizes indicate charge deposited.

430 TeV inside detector PeV v_{μ} no air shower

all cosmic neutrinos are isolated by self-veto

HESE-7.5 years distribution

HESE-7.5 years distribution

Expected angular distributions

How to look in the downgoing direction?

Schonert, Gaisser, and Resconi (arXiv:0812.4308) Phys.Rev.D 79 (2009) 043009

What is the passing fraction?

Air shower

Passing Fraction = Earth surface Veto Cosmic Ray Flux * Shower Development * Muon Energy Loss * **Detector Response**

Passing fraction: probability that all accompanying muons of the shower pass the cuts (veto) given a neutrino interaction in the detector

- Passing Fraction =
- Cosmic Ray Flux *
- Shower Development *
- Muon Energy Loss *
- **Detector Response**

hadronic cascade

Passing Fraction =

Cosmic Ray Flux *

Shower Development *

Muon Energy Loss *

Detector Response

CR->meson->(neutrino+muon)

CA, Palomares-Ruiz, Schneider, Wille, Yuan arXiv:1805.11003

1/

Adding correlated and uncorrelated muons

Muon and neutrino from same interaction N-body decay governs products

Muon from separate shower branch Product governed by "average shower" Cosmic ray shower with parent energy subtracted

CA, Palomares-Ruiz, Schneider, Wille, Yuan arXiv:1805.11003

Coincident muons supress neutrino flux!

HESE-7.5 years angular distribution

Southern Sky/Down-going
HESE-7.5 years angular distribution

Starting Events Energy Distribution And Inferred Spectrum

High-Energy Starting Events energy distribution is well described by a single power-law, but with a spectral index softer than the northern tracks!

Comparison of different single power-law spectra

Shower power (hep-ph/0409046): Cascade-only event selections also produce very pure astrophysical neutrino samples!
Multiyear cascade analysis extends to TeV energies, yields a harder spectrum. Restricting this above 60 TeV, HESE spectrum is recovered.
First hints of a diffuse component in the ANTARES data!

Summary:

complementary search strategies

Neutrinos interacting inside the detector

Muon neutrinos filtered by Earth

Total energy measurement all flavors, all sky Astronomy: angular resolution superior (<0.4 degrees)

electron and tau neutrinos

Search for Neutrino Sources

138322 neutrino candidates in one year

120 cosmic neutrinos ~12 separated from atmospheric background with E>60 TeV structure in the map results from neutrino absorption by the Earth

(Submit manuscr

Recent News!

NGC1068 is a

HOME > SCIENCE > VOL. 378, NO. 6619 > EVIDENCE FOR NEUTRINO EMISSION FROM THE NEARBY ACTIVE GALAXY NGC 1068

RESEARCH ARTICLE | NEUTRINO ASTROPHYSICS

f 🎐 in 🤠 🗞

About 🗸

Evidence for neutrino emission from the nearby active galaxy NGC 1068

- we observe a diffuse flux of neutrinos from extragalactic sources
- a subdominant Galactic component cannot be excluded
- where are the PeV gamma rays that accompany PeV neutrinos?

v and γ beams : heaven and earth

proton • accelerator • target directional beam p, e[±] magnetic fields

accelerator is powered by large gravitational energy

Supermassive black hole

nearby radiation

 $p + \gamma \rightarrow n + \pi^+$

~ cosmic ray + neutrino

~ cosmic ray + gamma

The opaque Universe

$\gamma + \gamma_{CMB} \rightarrow e^+ + e^-$

gamma rays accompanying IceCube neutrinos interact with interstellar photons and fragment into multiple lower energy gamma rays that reach earth

p

The opaque Universe

$\gamma + \gamma_{CMB} \rightarrow e^+ + e^-$

e⁺

e-

GeV

to

dark sources below 100 TeV not seen in γ 's ? gamma rays cascade in the source to lower energy

162

Multi-year cascade (v_e+v_τ) analysis: dark sources ?

excess gamma rays relative to Fermi flux? Obscured sources?

Fermi sources are mostly blazars

common sources?

→ multimessenger astronomy

Multimessenger approach

timing/localization from satellites

timing + direction \rightarrow low background

HIGH-ENERGY EVENTS NOW PUBLIC ALERTS!

We send our high-energy events in real-time as public GCN alerts now!

TITLE:	GCN/AMON NOTICE	
NOTICE_DATE:	Wed 27 Apr 16 23:24:24 UT	GCN
NOTICE_TYPE:	AMON ICECUBE HESE	
RUN_NUM:	127853	
EVENT_NUM:	67093193	
SRC_RA:	240.5683d {+16h 02m 16s} (J2000),	
	240.7644d {+16h 03m 03s} (current),	
	239.9678d {+15h 59m 52s} (1950)	
SRC_DEC:	+9.3417d {+09d 20' 30"} (J2000),	
	+9.2972d {+09d 17' 50"} (current),	
	+9.4798d {+09d 28' 47"} (1950)	
SRC_ERROR:	35.99 [arcmin radius, stat+sys, 90% o	:ontainment]
SRC_ERROR50:	0.00 [arcmin radius, stat+sys, 50% co	ontainment]
DISCOVERY_DATE:	17505 TJD; 118 DOY; 16/04/27 (yy/	′mm/dd)
DISCOVERY_TIME:	21152 SOD {05:52:32.00} UT	
REVISION:	2	
N_EVENTS:	1 [number of neutrinos]	
STREAM:	1	
DELTA_T:	0.0000 [sec]	
SIGMA_T:	0.0000 [sec]	
FALSE_POS:	0.0000e+00 [s^-1 sr^-1]	
PVALUE:	0.0000e+00 [dn]	
CHARGE :	18883.62 [pe]	
SIGNAL_TRACKNESS:	: 0.92 [dn]	
SUN_POSTN:	35.75d {+02h 23m 00s} +14.21d {+14d	12' 45"}

N notice for starting track sent Apr 27

We send rough reconstructions first and then update them.

Real time system up and running!

Try the IceCube Augmented reality app to see our alert events!

Search for:

IceCubeAR

IceCube Trigger

43 seconds after trigger, GCN notice was sent

///////////////////////////////////////	(/ / / / / / / / / / / / / / / / / / /
TITLE:	GCN/AMON NOTICE
NOTICE_DATE:	Fri 22 Sep 17 20:55:13 UT
NOTICE_TYPE:	AMON ICECUBE EHE
RUN_NUM:	130033
EVENT_NUM:	50579430
SRC_RA:	77.2853d {+05h 09m 08s} (J2000),
-	77.5221d {+05h 10m 05s} (current),
	76.6176d {+05h 06m 28s} (1950)
SRC_DEC:	+5.7517d {+05d 45' 06"} (J2000),
-	+5.7732d {+05d 46' 24"} (current),
	+5.6888d {+05d 41' 20"} (1950)
SRC_ERROR:	14.99 [arcmin radius, stat+sys, 50% containment]
DISCOVERY_DATE:	18018 TJD; 265 DOY; 17/09/22 (yy/mm/dd)
DISCOVERY_TIME:	75270 SOD {20:54:30.43} UT
REVISION:	0
N_EVENTS:	1 [number of neutrinos]
STREAM:	2
DELTA T:	0.0000 [sec]
SIGMA T:	0.0000e+00 [dn]
ENERGY :	1.1998e+02 [TeV]
SIGNALNESS:	5.6507e-01 [dn]
CHARGE :	5784.9552 [pe]

multimessenger neutrinos: a new class of sources and a new class of telescopes

IceCube 170922	

IceCube 170922

IceCube 170922

MAGIC detects emission of > 100 GeV gammas

Fermi detects a flaring blazar within 0.1°

multiwavelength campaign launched by IC 170922

IceCube, *Fermi* –LAT, MAGIC, Agile, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, KISO, Liverpool, Subaru, *Swift*, VLA, VERITAS

- neutrino: time 22.09.17, 20:54:31 UTC energy 290 TeV direction RA 77.43° Dec 5.72°
- Fermi-LAT: flaring blazar within 0.1° (7x steady flux)
- MAGIC: TeV source in follow-up observations
- follow-up by 12 more telescopes
- → IceCube archival data (without look-elsewhere effect)
- → Fermi-LAT archival data

Looking at the archival data in the TXS direction

search in archival IceCube data:

- 150 day flare in December 2014 of 19 events (bkg <6)
- •2.10⁻⁵ bkg. probability
- •spectrum E^{-2.1}

No significant gamma-ray emission at flaring time!

v and γ beams : heaven and earth

proton • accelerator • target directional beam [•]p, e[±] magnetic fields

accelerator is powered by large gravitational energy

Supermassive black hole

nearby radiation

neutrino source needs an accelerator and a target source opacity?

v and γ beams : heaven and earth

proton

directional

beam

 p, e^{\pm}

accelerator is powered by large gravitational energy

Supermassive black hole

• accelerator

• target

magnetic

fields

the gamma rays that accompany the neutrinos lose energy in the source nearby adiation

trino source an accelerator and a target source opacity?

Neutrino Flare in 2014

Time-dependent search in the direction of TXS 0506+056 revealed a neutrino flare in December 2014.

Neutrino Flare in 2014

- Enhancement is seen around IC170922A in gamma-rays and radio, and a drop in optical.
- Neutrino flare in 2014-2015 is correlated with enhancement in radio and drop in optical flux, but *no change in gamma-rays.*

Gamma-neutrino anti-correlation?

Figure 3. γ -ray light curves for three blazars with coincident high-energy neutrinos. a: PKS B1424-418 as mea-

E. Kun, I. Bartos, J. B. Tjus et al 2009.09792

The gamma-ray correlation is not so direct/obvious

NGC 1068 & the Neutrino Signal

- NGC 1068, aka M77, is a Seyfert 2 galaxy with a heavily obscured nucleus
- One of the best studied AGN, which played a major role in AGN unification scheme
- Compton thick environment with Column density ~ 10²⁵ cm⁻²
- Bright in X-ray, and high infrared luminosity indicating high level of star formation
 - Historically considered as a promising cosmic-ray accelerator.
- IceCube 10 yr time-integrated search found 51 neutrinos in the direction of NGC 1068, with a soft spectrum.
- The neutrino flux much higher than the observed γ-ray flux by Fermi.
- Models built on measured γ-ray flux by Fermi cannot accommodate the neutrino flux.
- Obscuring necessary to absorb the pionic γ-ray accompanying neutrinos.

Interlude: Review of neutrino oscillations

KamLAND sees the oscillation wiggle

High-energy astrophysical neutrino flavor composition

Neutrino oscillations: natural interferometers

Neutrino oscillation is an interference experiment (cf. double slit experiment)

For double slit experiment, if path v_1 and path v_2 have different length, they have different phase rotations and it causes interference.

Neutrino oscillations: natural interferometers

Neutrino oscillation is an interference experiment (cf. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotation, they cause quantum interference.

IVEL IRI ITASI If v_1 and v_2 , have different mass, they have different velocity, so thus different phase rotation.

Neutrino oscillations: natural interferometers

Neutrino oscillation is an interference experiment (cf. double slit experiment)

If v_1 and v_2 interact with anything along their way, they will produce new oscillation features!

For example: long-range neutrino forces, dark matter-neutrino interactions, neutrino decay, Lorentz violation, etc ...

195

Flavor composition @ source

 $(\alpha_e : \alpha_\mu : \alpha_\tau)$ (GRBs, AGNs, blazars, pulsars...) $\pi^+ \to \mu^+ + \nu_\mu$ $\mu^+ \to e^+ + \nu_\mu + \bar{\nu}_e$ (1:2:0)Pion Muon-damped $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ (0:1:0)(1:0:0) $n \rightarrow p + e^- + \bar{\nu}_e$ Neutron

Initial flavor

IVEL IRI ITASI

¹∕₃ of each flavor

Unitarity

Predicted flavor triangles given some initial flavor composition

Due to unitarity, the possible Earth flavor ratios for a given initial flavor composition is confined. 204

Calculating $\bar{P}_{\nu_{\alpha} \to \nu_{\beta}}(E)$

The oscillation probability depends on the neutrino propagation hamiltonian

$$H(E) = V(E)^{\dagger} \left(egin{array}{ccc} \Delta_1(E) & 0 & 0 \ & 0 & \Delta_2(E) & 0 \ & 0 & 0 & \Delta_3(E) \end{array}
ight) V(E)$$

Since the oscillation length is much smaller than the distance of the sources

$$\bar{P}_{\nu_{\alpha} \to \nu_{\beta}}(E) = \sum_{i} |V_{\alpha i}|^{2} |V_{\beta i}|^{2}$$

Oscillation probabilities depend only on the mixing elements!

After oscillations where will the different sources end up?

See also Bustamante et al. PRL 115, 161302 (2015); Rasmussen et al. 1707.07684; Palomares-Ruiz 1411.2998; Palladino et al 1502.02923; Bustamante et al 1610.02096; Brdar et al. 1611.04598; Farzan & Palomares-Ruiz 1810.00892; CA et al. 1909.05341; Learned & Pakvasa hep-ph/9405296 ..

Non-unitarity

Non-unitarity

+Neutrino decay

M. Bustamante, J. Beacom, K. Murase (1610.02096) 209

+ NSI@Earth

In the pion scenario NSI effects are small.

This is not the case for other initial flavor ratios.

+ New physics: effective operators

$$H = \frac{1}{2E} U M^2 U^{\dagger} + \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$$

(setting operators scales to current SK bounds)

Other New Physics Effects on the Flavor Triangle

Learned & Pakvasa arXiv:hep-ph/9405296, Mena et al arXiv:1404.0017, CA et al arXiv:1506.02043, Bustamante et al arXiv:1506.02645, Brdar et al arXiv:1611.04598, Gonzalez-Garcia et al arXiv:1605.08055, Rasmussen et al arXiv:1707.07684, Etc

Folding in with the effective areas we can get expected track to cascade ratios

Ternary classification

To tau or not to tau, that is the question. Whether 'tis nobler underground to measure, tracks and cascades of outrageous flavors, or to hunt taus against a sea of troubles and by good fortune get them.

A. Garcia-Soto, P. Zhelnin, I. Safa, CA, arXiv:2112.06937

Find tau neutrinos ~ Astrophysical neutrinos

Most atmospheric neutrinos are mostly produced by either pion or kaon decay.

Tau neutrinos are predominantly produced by D-meson decay, which is a very small contribution.

Tau neutrino contribution negligible in energy range of interest.

Atmospheric neutrino source

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\downarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$ $\pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}$ $\downarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$

Strategy:

Search for high-energy double cascade deposition

Find tau neutrinos ~ Astrophysical neutrinos (caveat)

Strategy Three: Find tau neutrinos

Detecting anthropogenic tau neutrinos at neutrino experiments

DONUT: charmed mesons (no oscillation) and emulsion

DONUT Phys. Lett. B, Volume 504, Issue 3, 12 April 2001, Pages 218-224

OPERA: oscillation (appearance from CNGS muon neutrino beam) and emulsion

OPERA Phys. Rev. Lett. 115, 121802 (2015)

tau decay length = γ c τ = 50m per PeV

Two tau neutrino candidates observed in 7.5 HESE

All energies: 4 events

0 new events in 2016 season 0 new events in 2017 season Above 60TeV: 2 events 0 new events in 2016 season

0 new events in 2017 season

Event 2 is in a region where tau neutrinos are most likely to appear, event 1 is not.

Event 1 (Big bird): PeV event, does not show double bang characteristics on DOMs

Event 2: First astrophysical ν_{τ} candidate identified!

Total deposited energy ~ 90 TeV.

First "bang" in time (shower)

Second "bang" in time (tau decay)

Latest Astrophysical Flavor Measurement

🙆 Springer

IceCube Collaboration EPJ-C 82, 1031 (2022)

Tau Double Pulse Events

Double Pulse Algorithm (DPA)

Cascade vs Track

Event #1 (2014)

P-value: 0.196

Event #2 (2015)

P-value: 1.0

Particle Physics With High-Energy & & Interesting open questions

IVEL (RI) (TAS)

When will we measure the "prompt component"? Where are the neutrinos from D meson decay?

Like in the Earth the Sun is bombarded by CR, which shower in the solar atmosphere producing neutrinos

Where are the neutrinos produced?

neutrino "transport" neutrino production

Showers occur in the outer part of the Sun.
Very boosted muons decay in after shower region.

Neutrino transport

 $= \frac{dF_{\nu}(E)}{dx} = -i[\mathrm{H}, \mathrm{F}_{\nu}(\mathrm{E})] - \sum_{\alpha} \frac{1}{2\lambda^{\alpha}(E)} \{\Pi_{\alpha}, F_{\nu}(E)\}$ $+ \int_{E'} \frac{1}{\lambda_{\mathrm{NC}}(E')} \sum_{\alpha} \{\Pi_{\alpha}, F_{\nu}(E')\} NC(E', E)$ $+ \int_{E'} \frac{1}{\lambda^{\tau}(E')} F_{\tau}(E') CC_{\tau}(E', E) \Pi_{\tau}$ $+ \mathrm{Br}_{\mu} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\tau}(E', E) \Pi_{\mu},$ $+ \mathrm{Br}_{e} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\bar{\tau}}(E', E) \Pi_{e}$

Neutrino propagation accounts for CC, NC, oscillations, and tau regeneration. Code is fast: 15-30 min per calculation.

Get it here:

(here)

https://github.com/jsalvado/SQuIDS https://github.com/arguelles/nuSQuIDS

Averaging Oscillations to Earth!

- At these high energies neutrino coherence is maintained.
- Low energy fast oscillation are average out due to vacuum oscillation through the year:
 - Aphelion to perihelion distance difference is ~ 4 million km.
 - Oscillation length at 100 GeV is ~ 1% of this distance.
 - Oscillation length is comparable at 10 TeV.

$$\bar{\Phi}_{\alpha}(E_{\nu}) = \frac{1}{T} \sum_{\beta} \int_0^T dt \ P_{osc}^{\beta,\alpha}(r(t), E_{\nu}) \Phi_{b,\beta}(E_{\nu})$$

(*used average nu+nubar effective area)

Experiment	Expected ν_{μ} rate R (evts / yr)	Expected $\bar{\nu}_{\mu}$ rate R (evts / yr)
IceCube (IC79)	1.36 < R < 2.17	0.73 < R < 1.17
IceCube (IC86)*	2.05 < R < 3.29	1.97 < R < 3.16
ANTARES*	0.032 < R < 0.053	0.030 < R < 0.049
IceCube+PINGU	1.42 < R < 2.26	0.79 < R < 1.26
KM3NeT*	3.02 < R < 4.95	2.78 < R < 4.53

Solar-Atmospheric neutrinos as a DM background

Maybe we wont find solar WIMPs, but these neutrinos are there for sure!

One persons background, becomes another one's signal!

There is also expected neutrino production from solar flares!

On going searches for temporal coincidence neutrino signature and solar flare.

By the way ... odd things are happening with the gamma-rays from the Sun

Unexpected Dip in the Solar Gamma-Ray Spectrum

Qing-Wen Tang, Kenny C. Y. Ng, Tim Linden, Bei Zhou, John F. Beacom, Annika H. G. Peter

The TeV Sun Rises: Discovery of Gamma rays from the Quiescent Sun with HAWC

FIG. 2. Results for the combination of bins B2, B3, and B4, but otherwise as in Fig. 1. Left: The full 6.1-year data. Middle: Solar-maximum period. Right: Solar-minimum period.

Do we understand high-energy neutrino interactions? Will there be surprises?

244

The first Glashow resonance event:

anti- v_e + atomic electron \rightarrow real W at 6.3 PeV

Resonant production of a weak intermediate boson by an anti-electron neutrino interacting with an atomic electron

W production or background?

Signal: hadronic (quark-antiquark decay of the W)

Or

Background: electromagnetic shower radiated by a high energy background cosmic-ray muon

muons from pions (v=c) outrace the light propagating in ice that is produced by the electromagnetic component (v<c)

Hadronic shower from W-decay:

Early muons followed by electromagnetic shower

t₁=328 ns

Dark matter annihilation

WIMP Miracle: The final frontier

To rule out the WIMP miracle in a "model independent way" one needs to constraint all SM annihilation channels.

For good limits, we need good predictions!

https://github.com/lceCubeOpenSource/charon

IceCube results with updated calculations to appear soon!

Q. Liu & J. Lazar *et al* 2007.15010

Bauer, Rodd & Webber et al 2007.15001

Background agnostic constraints on Dark matter making neutrinos

Flux of neutrinos from dark matter cannot overshoot measurements of the integrated neutrino flux.

251

Background agnostic constraints on Dark matter making neutrinos

Associated gamma-ray flux should also not overshoot constraints

And many more measurements ...

CA, D. Delgado, A. Friedlander, A. Kheirandish, I. Safa, A.C. Vincent, H. White arXiv:2210.01303

Constraints on dark matter decay to neutrinos

Constraints on dark matter decay to neutrinos

Constraints on dark matter decay to neutrinos

Constraints on dark matter decay to neutrinos

CA, D. Delgado, A. Friedlander, A. Kheirandish, I. Safa, A.C. Vincent, H. White arXiv:2210.01303

And many more measurements ...

CA, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, A.C. Vincent *Rev. Mod. Phys.* 93, 35007 (2021); See also Beacom et al. *PRL* 99: 231301, 2007.

Dark matter neutrino incoherent scattering

New Trail With High-Energy Neutrinos

DM-v interaction will result in scattering of neutrinos from extragalactic sources, leading to *anisotropy* of diffuse neutrino flux.

CA, A. Kheirandish & A. Vincent Phys. Rev. Lett. 119, 201801

HESE Neutrino Skymap

HESE: high-energy starting events IceCube Collaboration, arXiv:2205.12950

Events are compatible with an isotropic distribution: found no signal!

Also include effects in energy and direction

Color scale is the maximum allowed coupling.

Cosmological bounds using Large Scale Structure from Escudero et al 2016

IVEI IRI ITASI

263

·····χ

New constraints on neutrino-dark matter interactions

Second Generation Analyses Using Medium-Energy Starting Events

Larger sample sizes data sets yet to be used for these searches. Only IceCube's High-Energy Starting Events used so far.

Neutrino Time of Flight

CvB or DM θ primary ν Scattered ν Farth γ D Transient Source

$$v(E) = c \left[1 - s_n \frac{n+1}{2} \left(\frac{E}{E_{\text{LV},n}} \right)^n \right]$$

Time-of-flight constraints rely on

assumption of flare emission

window. Handle with care.

$$(\Delta v_{\nu\gamma}/c)_{TXS} \sim 10^{-11}$$

 $(\Delta v_{\nu\gamma}/c)_{SN1987A} \sim 3 \cdot 10^{-9}$

Space-time effects J. Ellis et al arXiv:1807.051550 K. Wang et al. arXiv:2009.05201 Zhang & Ma arXiv:1406.4568 Dark Matter-neutrino interactions Murase & Shoemaker arXiv:1903.08607

Opacity to Individual Sources Kelly et al arXiv:1808.02889

Opacity constraints rely on assumptions on the intrinsic source luminocity. Handle with care.

dark matter-neutrino couplings CA et al. arXiv:1703.00451 Kelly et al arXiv:1808.02889 Choi et al. arXiv:1903.03302

neutrino-neutrino couplings Kelly et al arXiv:1808.02889 CA et al. arXiv:2009.05201 Carpio et al. arXiv:2104.15136

Search for Lorentz Violation via Flavor Morphing

As neutrinos travel from their far away source they can interact with a Lorentz violating field.

Effects expected at the Planck Scale.

Space-time effects J. Ellis et al arXiv:1807.051550 K. Wang et al. arXiv:2009.05201 Zhang & Ma arXiv:1406.4568

VERI

eetings?" mag

Trajectories in the flavor triangle in the presence of Lorentz Violation (LV)

Results on high-dimensional LV operators

IceCube collaboration Nature Physics (2022) arXiv:2111.04654

Neutrino Oscillations At Cosmic Scales

Carloni, Martínez-Soler, CA, Babu, Bhupal Dev arXiv:2212.00737

$$P_{\alpha\beta} = \frac{1}{2} \sum_{j=1}^{3} |U_{\beta j}|^2 |U_{\alpha j}|^2 \left[1 + \cos\left(\frac{\delta m_j^2 L_{\text{eff}}}{2E_{\nu}}\right) \right]$$

PseudoDirac Neutrinos

Carloni, Martínez-Soler, CA, Babu, Bhupal Dev arXiv:2212.00737

See-saw scenario $M_R >> M_D$ **Pseudo-Dirac** $M_R << M_D$

J. W. Valle Phys.Rev.D 28 (1983) 540

IVE IRI

Neutrino Oscillations At Cosmic Scales

Work by Kiara Carloni and Ivan Martinez-Soler

Data analysis pending ... fingers crossed!

K. Carloni, I. Martínez-Soler, CA, KS Babu, PS Bhupal Dev arXiv:2212.00737

Unusual things

Fox et al arXiv:1809.09615

ANITA Collaboration arXiv:1803.05088

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	2006-12-28,00:33:20UTC	2014-12-20,08:33:22.5UTC
Lat., Lon. ⁽¹⁾	-82.6559, 17.2842	-81.39856, 129.01626
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az.	$-27.4\pm0.3^\circ, 159.62\pm0.7^\circ$	$-35.0\pm0.3^\circ, 61.41\pm0.7^\circ$
RA, $Dec^{(2)}$	282.14064, +20.33043	50.78203, +38.65498
$E_{shower}^{(3)}$	$0.6\pm0.4~{ m EeV}$	$0.56^{+0.3}_{-0.2}$ EeV

See also ANITA Coll. arXiv:2112.07069 for ANITA-IV results. Four additional interesting events observed.

Unusual things

Explaining the ANITA Anomaly with Inelastic Boosted Dark Matter

A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Showers Detected by ANITA

John F. Cherry¹ and Ian M. Shoemaker¹

¹Department of Physics, University of South Dakota, Vermillion, SD 57069, USA* (Dated: 8-23-2018)

Looking

at the

Axionic

Dark Sector with ANITA

275

Munneke,⁴ J. Siegert⁷

Alexander Kusenko,^{2,3} Peter Kuipers

and Martin

Schroeder,⁶

Dustin M.

Andrew Romero-Wolf,

Shoemaker,

Ian M.

Tau Regeneration

Safa ... CA... arXiv:1909.10487

Intimate connection between PeV and ZeV energies

Get code here: https://github.com/icecube/TauRunner Put neutrinos here

Ruling out ANITA Neutrino Interpretation

Constraints on EeV Fluxes From PeV Measurements

PeV Tau Neutrinos to Unveil Ultra-High-Energy Sources

Carlos A. Argüelles,^{1,*} Francis Halzen,^{2,†} Ali Kheirandish,^{3,‡} and Ibrahim Safa^{1,2,§}

arXiv:2203.13827

See CA, Bustamante, Kheirandish, Palomares-Ruiz, Salvado, and Vincent arXiv:1907.08690 for more details

That potential is growing: The Upgrades

Phase 1: 7 new, high-precision strings in the central, densely instrumented region. Funded, installation in 2025.

New detector technologies. Better low energy reconstruction. Improved flavor identification.

Improved light-collection for low-energy events

*DeepCore (shown on the left) is the current low-energy extension of IceCube

That potential is growing: The Upgrades

Phase 2: x10 the volume of present IceCube, plus additional detectors.

The Future of IceCube: The Upgrades

Phase 1: 7 new, high-precision strings in the central, densely instrumented region. Funded, installation in 2022.

Phase 2: x10 the volume of present IceCube, plus additional detectors. Progressing through NSF Science Board approval.

Km3Net

KM3NeT: ARCA & ORCA

ARCA → TeV-PeV neutrino astronomy
ORCA → neutrino mass ordering with few-GeV atmospheric neutrinos

ORCA: Oscillation **R**esearch with **C**osmics in the **A**byss

ARCA: Astroparticle Research with Cosmics in the Abyss

Km3Net

- ANTARES completed construction in 2008
 - ~2500m deep, 12 Vertical lines, each 350m high
 - Decommissioned May 2022

• KM3NET:

- ORCA: 2500 m deep, 20m string spacing, 10 detection unites running
- ARCA: 3500m deep, 90m string spacing, 19 detection units successfully deployed

ORCA's first atm-nus!

BAIKAL-GVD

- 2022: Successfully deployed 10 clusters, 5 laser stations
- Each cluster has 288 OMs and depth 750-1275m
- 2025/2026 \sim 1km3 GVD with total of 16-18 clusters
- 2022-2024 "Conceptual Design Report" for next generation neutrino telescope in Lake Baikal

Envisioned full detector:

- 1211 strings
- 30 hDOM per string
- 7.5 km^3
- 3475m depth at South China Sea
- Underwater robots for deployment and maintena

Conceptual Design of hDOM

Thinking about Earth-skimming neutrino detectors

The geometry here is key for the acceptance of neutrino detection

Thinking about Earth-skimming neutrino detectors

The geometry here is key for the acceptance of neutrino detection

This would be a more ideal scenario, but can't put mountain over detector

Pavel Zhelnin

William Thomson

Diya Delgado

Jeffrey Lazar

Ibrahim Safa

TAMBO

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

P. Zhelnin, I. Safa, A. Romero-Wolf and CA ICHEP2022

*TAMBO means house or inn in Quechua.

We went to Peru earlier last year and found a location for the experiment! First prototype detectors are expected to be deployed next summer.

Terrestrial measurements

Terrestrial measurements *astrophysical* frontier

Projected Upgrade Flavor Measurement

N. Song, S. Li, CA, M. Bustamante, A. Vincent (arXiv:2012.12893)

Why look for new physics with HE neutrinos?

- Standard neutrino oscillations term decreases with energy.
- High-energy atmospheric neutrinos: understood flux and flavor composition.
- Astrophysical neutrinos traverse the largest distances, small effects can accumulate.

Because of oscillations, neutrinos are natural clocks. As time passes, they change from one flavor to the other, and back.

Lorentz violation will change the neutrino oscillation frequency producing **new flavor conversion**

307

We have search for Lorentz Violation with high-energy Atmospheric Neutrinos

The analysis sensitivity, especially for high-dimensional operators, is dominated by the highest-energy events.

$$H \sim \frac{m^2}{2E} + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)} \cdots$$

Lorentz violation changes the ratio of horizontal to vertical events.

Leading constraints across several fields of physics

dim.	method	type	sector	limits	ref.
3	CMB polarization	astrophysical	photon	$\sim 10^{-43} { m GeV}$	[6]
	He-Xe comagnetometer	tabletop	neutron	$\sim 10^{-34}~{ m GeV}$	[10]
	torsion pendulum	tabletop	electron	$\sim 10^{-31}~{ m GeV}$	[12]
	muon g-2	accelerator	muon	$\sim 10^{-24}~{ m GeV}$	[13]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\begin{aligned} \text{Re}(\mathring{a}^{(3)}_{\mu\tau}) , \text{Im}(\mathring{a}^{(3)}_{\mu\tau}) &< 2.9 \times 10^{-24} \text{ GeV } (99\% \text{ C.L.}) \\ &< 2.0 \times 10^{-24} \text{ GeV } (90\% \text{ C.L.}) \end{aligned}$	this work
4	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-38}$	[7]
	Laser interferometer	LIGO	photon	$\sim 10^{-22}$	[8]
	Sapphire cavity oscillator	tabletop	photon	$\sim 10^{-18}$	[5]
	Ne-Rb-K comagnetometer	tabletop	neutron	$\sim 10^{-29}$	[11]
	trapped Ca^+ ion	table top	electron	$\sim 10^{-19}$	[14]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\overset{\circ}{c}{}^{(4)}_{\mu\tau}) , \operatorname{Im}(\overset{\circ}{c}{}^{(4)}_{\mu\tau}) < 3.9 \times 10^{-28} (99\% \text{ C.L.}) < 2.7 \times 10^{-28} (90\% \text{ C.L.})$	this work
5	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-34} { m GeV^{-1}}$	[7]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-22}$ to 10^{-18} GeV ⁻¹	[9]
	neutrino oscillation	atmospheric	neutrino	$\frac{ \operatorname{Re}(\mathring{a}_{\mu\tau}^{(5)}) , \operatorname{Im}(\mathring{a}_{\mu\tau}^{(5)}) }{< 1.5 \times 10^{-32} \text{ GeV}^{-1} (99\% \text{ C.L.})} $	this work
6	GRB vacuum birefringene	astrophysical	photon	$\sim 10^{-31} \text{ GeV}^{-2}$	[7]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-42}$ to 10^{-35} GeV ⁻²	[9]
	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-31} \text{ GeV}^{-2}$	[15]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\mathring{c}_{\mu\tau}^{(6)}) , \operatorname{Im}(\mathring{c}_{\mu\tau}^{(6)}) < 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.}) < 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})$	this work
7	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-28} { m GeV^{-3}}$	[7]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\mathring{a}_{\mu\tau}^{(7)}) , \operatorname{Im}(\mathring{a}_{\mu\tau}^{(7)}) < 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.}) < 3.6 \times 10^{-41} \text{ GeV}^{-3} (90\% \text{ C.L.})$	this work
8	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-46} { m GeV^{-4}}$	[15]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\mathring{c}_{\mu\tau}^{(8)}) , \operatorname{Im}(\mathring{c}_{\mu\tau}^{(8)}) \leq 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) \\ < 1.4 \times 10^{-45} \text{ GeV}^{-4} (90\% \text{ C.L.})$	this work

Very strong limits on Lorentz Violation induced by dimension-6 operators!

Nature Physics (2018) s41567-018-0172-2

Trajectories in the flavor triangle in the presence of Lorentz Violation (LV)

Results on high-dimensional LV operators

Beyond the Lorentz Violation interpretation

Coherent Dark Matter Scattering

Capozzi et al. 1804.05117

Dark matter neutrino incoherent scattering

DM-v interaction will result in scattering of neutrinos from extragalactic sources, leading to *anisotropy* of diffuse neutrino flux.

CA, A. Kheirandish & A. Vincent Phys. Rev. Lett. **119**, 201801

Neutrino skymap

What about the cross section?

The low energy approximation does not work at a PeV!!

Begin to resolve microphysics: need more concrete model

Two Simplified Models

Fermion DM, vector mediator:

similar to a leptophillic Z' model

Scalar DM, fermionic mediator:

e.g. sneutrino dark matter, neutralino mediator. Resonant behavior (s-channel)

Effects in energy and direction

New constraints on neutrino-dark matter interactions

Color scale is the maximum allowed coupling.

Cosmological bounds using Large Scale Structure from Escudero et al 2016

-----χ

Thank you!

Bonus slides

Predicted flavor triangles given some initial flavor composition

Due to unitarity, the possible Earth flavor ratios for a given initial flavor composition is confined.

323

Beyond the Lorentz Violation interpretation

Induced by DM int. Looks the same as the LV term

Capozzi et al. 1804.05117

I'll come back to the astrophysical constraints soon... 324

LV Parameter		Limit at 95% C.L	. Best Fit	No LV $\Delta \chi^2$	Previous Limit	
$e\mu$	$\operatorname{Re}\left(a^{T} ight)$	$1.8\times 10^{-23}~{\rm GeV}$	$1.0\times 10^{-23}~{\rm GeV}$	1 /	$4.2 \times 10^{-20} \text{ GeV}$	[58]
	$\operatorname{Im}\left(a^{T} ight)$	$1.8\times 10^{-23}~{\rm GeV}$	$4.6\times 10^{-24}~{\rm GeV}$	1.4	4.2 × 10 Gev	[00]
	$\operatorname{Re}\left(c^{TT} ight)$	8.0×10^{-27}	1.0×10^{-28}	0.0	0.6×10^{-20}	[58]
	$\operatorname{Im}\left(c^{TT} ight)$	8.0×10^{-27}	1.0×10^{-28}	0.0	<i>9</i> .0 × 10	[00]
e au	$\operatorname{Re}\left(a^{T} ight)$	$4.1\times 10^{-23}~{\rm GeV}$	$2.2 \times 10^{-24} \text{ GeV}$	0.0	$7.8\times 10^{-20}~{\rm GeV}$	[59]
	$\operatorname{Im}\left(a^{T} ight)$	$2.8\times 10^{-23}~{\rm GeV}$	$1.0\times 10^{-28}~{\rm GeV}$	0.0		
	$\operatorname{Re}\left(c^{TT} ight)$	9.3×10^{-25}	1.0×10^{-28}	03	1.3×10^{-17}	[59]
	$\operatorname{Im}\left(c^{TT} ight)$	1.0×10^{-24}	3.5×10^{-25}	0.5		
$\mu \tau$	$\operatorname{Re}\left(a^{T} ight)$	$6.5\times 10^{-24}~{\rm GeV}$	$3.2 \times 10^{-24} \text{ GeV}$	0.0		
	$\operatorname{Im}\left(a^{T} ight)$	$5.1 \times 10^{-24} \text{ GeV}$	$1.0\times 10^{-28}~{\rm GeV}$	0.9		
	$\operatorname{Re}\left(c^{TT} ight)$	4.4×10^{-27}	1.0×10^{-28}	0.1	_	
	$\operatorname{Im}\left(c^{TT}\right)$	4.2×10^{-27}	7.5×10^{-28}	0.1		

Current bounds from SK

$$\left(\begin{array}{ccc} 0 & c_{e\mu}^{TT} \\ \left(c_{e\mu}^{TT}\right)^* & 0 \\ \left(c_{e\tau}^{TT}\right)^* & \left(c_{\mu\tau}^{TT}\right)^* \end{array}\right)$$

325

 $c_{e\tau}^{TT}$

 $c_{\mu au}^{TT}$

0

(arXiv:1007:0006)

+ (eV) sterile neutrino

- Sterile neutrinos effect is small on propagation.
- Large change only if the sources are shooting sterile neutrinos

Brdar et al. JCAP 1701 (2017) no.01, 026

