The astrophysics of black hole mergers

- 1. Pairing massive BHs in galactic nuclei from large to small scales, role of gas
- 2. Electromagnetic signatures of massive BH binaries in EM observations or in GW detections
- 3. Where do massive BHs come from anyway? protogalaxy formation after the cosmic dark age
- 4. [Stellar-mass BH binaries] In AGN accretion disks with EM signatures

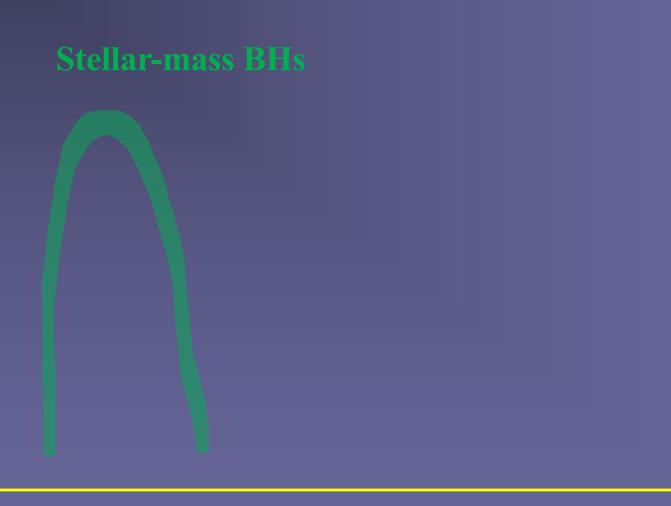
Where Do Massive BHs Come From?

Zoltán Haiman Columbia University

Lecture 3

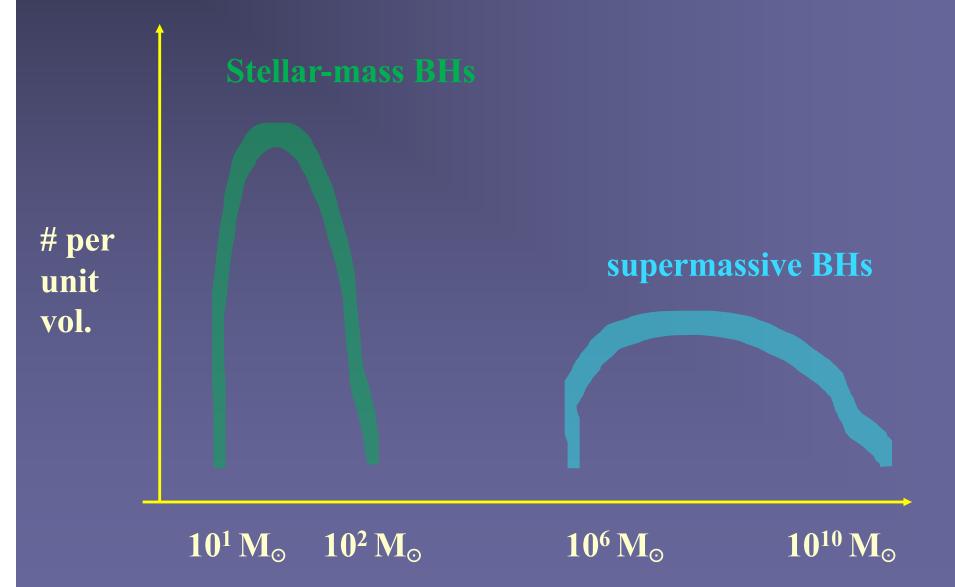
São Paulo Advanced School on Multi-Messenger Astrophysics

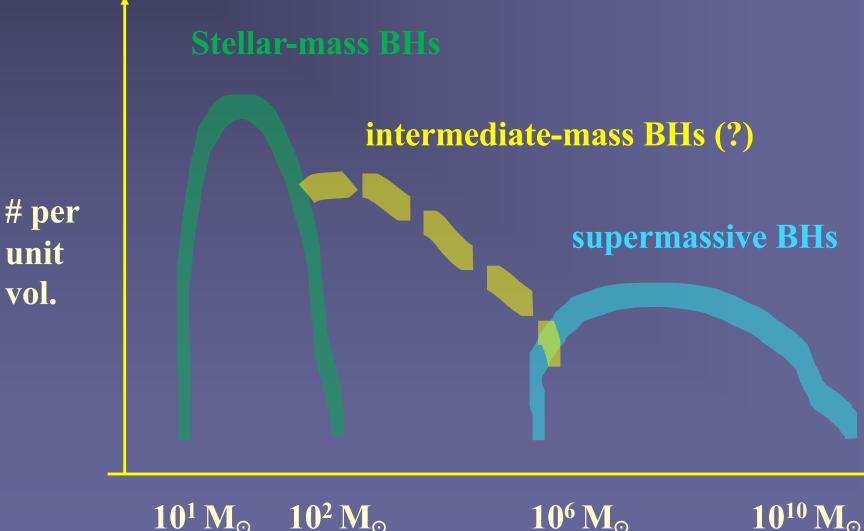
May 29 - June 7, 2023


1. Observations: types of black holes in the universe

2. Theory: where do massive black holes come from?

3. The Future: how to distinguish different pathways?


Black Hole Population



 $10^1\,M_\odot - 10^2\,M_\odot$

Black Hole Population

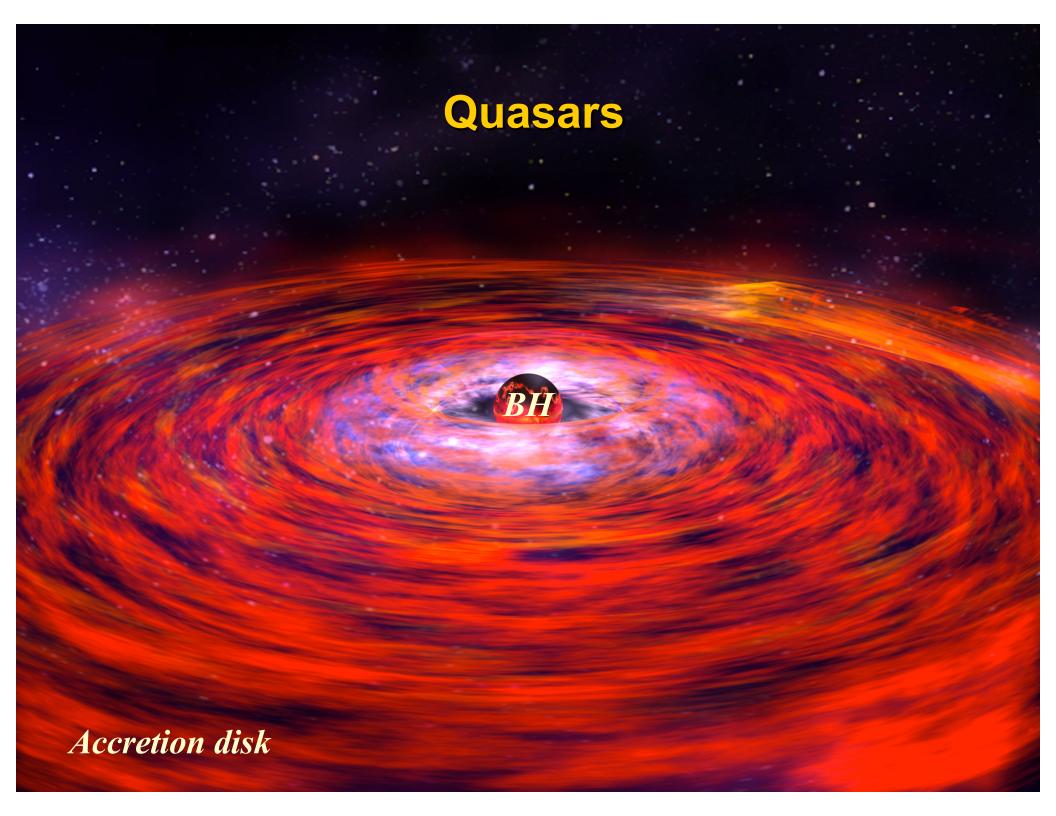
Black Hole Population

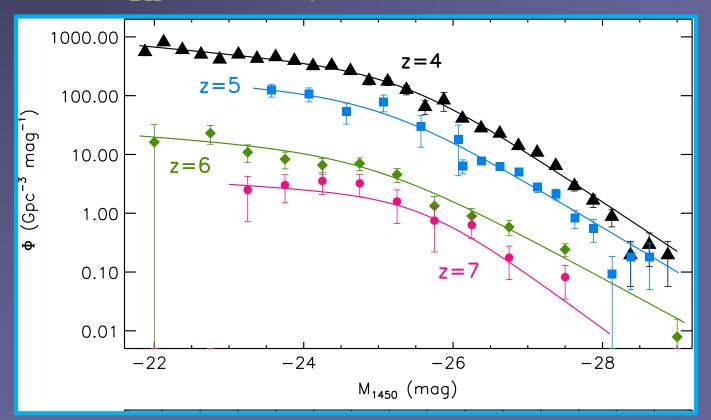
 $10^1 \,\mathrm{M_{\odot}}$ $10^2 \,\mathrm{M_{\odot}}$

 $10^6 \, M_{\odot}$

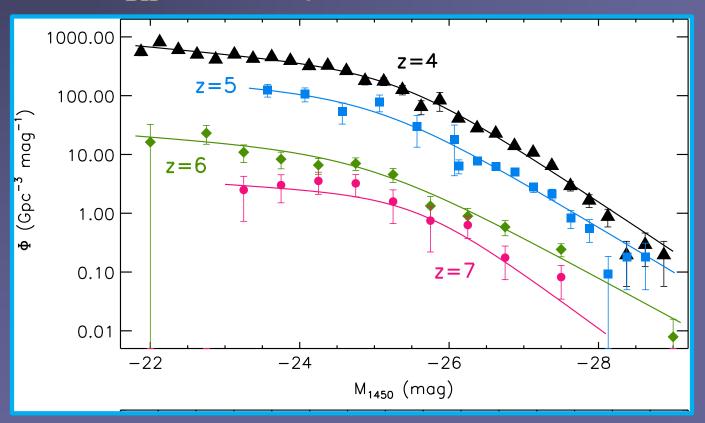
Two types of black holes

• Stellar-mass BHs:


- End fate of massive stars well understood
- Birth masses limited to few $\rm M_{\odot}\,\lesssim\,M\,\lesssim\,60~M_{\odot}$
- -100 million in a typical galaxy like the Milky Way (0.1% of stars)
- detected only when they have a partner: X-ray binary or GWs
- can be seen only in nearby universe (dozens) too faint otherwise
- (Super-) massive BHs:
 - One (or a few?) in center of each galaxy, $M_{BH} = \text{few} \times 10^{-4} M_{\text{stars}}$
 - Masses limited to $10^6 \,\mathrm{M_{\odot}} \lesssim \,\mathrm{M} \lesssim 10^{10} \,\mathrm{M_{\odot}}$
 - 100 detected indirectly (gas/stars speeds $\sim 0.1c$) or imaged (M87, SgrA*)
 - 1% are "active", visible to the edge of the universe as quasars (~1 million)
 - origin unknown, but likely formed early on
- Intermediate-mass BHs (?):
 - probably not in large numbers, but difficult to detect



Evolution of Massive BHs in Nuclei


Quasars with $M_{BH} = 10^{8-10} M_{\odot}$ seen out to z=7.54 (t=700 Myr)

Matsuoka et al.(2023; arXiv:2305.11225)

Evolution of Massive BHs in Nuclei

Quasars with $M_{BH} = 10^{8-10} M_{\odot}$ seen out to z=7.54 (t=700 Myr)

Matsuoka et al.(2023; arXiv:2305.11225)

~10⁶ M_{\odot} seeds old: evolution at z<6 (t>1 Gyr) understood from quasars: L_Q = $\epsilon/(1 - \epsilon) dM_{BH}/dt$ with ϵ ~10% (Soltan 1991)

The most distant quasars

distance ·

cosmic age (Gyr) 1.0 0.9 0.8 0.7 0.6 11 **SHELLQs** Record DES 10 holder: Pan-STARS1 CFHQ log (M. /Msun) * SDSS 9 z=7.64 others mass t=670 Myr $M = 1.6 \times 10^9 M_{\odot}$ 8 Wang+2021 Mseed = 10-100 Msun $Z_{seed} = 35$ 7 M₀< MEdd $\varepsilon = 0.1$ Planck ACDM 6 6 7 8 9 redshift z

Compilation from Inayoshi, Visbal & ZH, Annual Reviews of Astronomy & Astrophysics (2020)

1. Observations: types of black holes in the universe

2. Theory: where do massive black holes come from?

3. The Future: how to distinguish different pathways?

• Method 1: Collapse gas directly into a massive BH

• Method 2: Grow a single stellar-mass BH by accretion

• Method 3: Merge together many black holes

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

• Method 2: Grow a single stellar-mass BH by accretion

• Method 3: Merge together many black holes

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

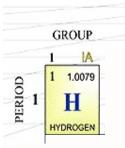
• Method 3: Merge together many black holes

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

Conditions in early universe different from present-day densities much higher myriad of small protogalaxies formed very early gas chemically primitive

- First "galaxies" appear at 100 million years
 - Gravity has to overcome gas pressure ("Jeans mass")
 - First "micro-galaxies" contain $10^6 M_{\odot}$ of gas


• First stars and black holes?

Must deflate its pressure not to remain a cloud
radiation via collisional excitations of molecules
Today: CO, H₂O (T=5K)

-	1 1.0079	9 RELATIVE ATOMIC M				IASS (1)	ASS (1) Semimetal Nonmetal										2 4.	
	H			DUP IUPAC GI		ROUP CAS	-	ali metal		16 Chalcogens element			1				-	H
-	HYDROGEN				IIIA	/ /	2 Aik	aline earth m	etal	al I7 Halogens element				14 IVA		Contraction of the local division of the loc		
	3 6.941	4 9.0122		/		/ /	Tra	insition metals	5	18 Noble	gas	4	5 10.811	6 12.011		8 15.999		10 2
	Li	Be	S	SYMBOL	B			Lanthanide Actinide		ARD STATE	(25 °C; 101 k Fe - solid	kPa)	B	C	N	0	F	N
	LITHIUM 11 22.990	BERYLLIUM 12 24,305			BORON		<u> </u>	riceinau		- liquid	TC - synthet	tic	BORON 13 26,982	CARBON 14 28.086	NITROGEN 15 30.974	OXYGEN 16 32.065	FLUORINE 17 35.453	NE0
				ELEN	MENT NAME					1	1	_	Al	Si	P	S	Cl	
	Na	Mg	3 1118	4 IVB	5 18	6 VIB	7 VIIB	8	VIIIB -	10	11 18	12 118	ALUMINIUM	SILICON	PHOSPHORUS	-	CHLORINE	A
		20 40.078	C	22 47.867	23 50.942	v / * ****		26 55.845	27 58.933		29 63.546		31 69.723	32 72.64			12	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	A CONTRACTOR OF A	MANGANESE	_	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYF
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 1
1	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	X
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM		TECHNETIUM		RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XEN
	55 132.91	56 137.33	57-71	72 178.49	73 180.95		75 186.21	-	-	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98		85 (210)	86
	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	R
	CAESIUM 87 (223)	BARIUM 88 (226)	Lanthanide	HAFNIUM 104 (261)	TANTALUM 105 (262)	TUNGSTEN 106 (266)	RHENIUM 107 (264)	OSMIUM 108 (277)	IRIDIUM	PLATINUM 110 (281)	GOLD	MERCURY 112 (285)	THALLIUM	LEAD 114 (289)	BISMUTH	POLONIUM	ASTATINE	RAD
	_	_	89-103 Ac-Lr		_	-			_	17.7								
	Fr	Radium	Actinida	IRII RUTHERFORDIUM	DUBNIUM	Sg seaborgium	Bh	181S hassium	MIC	Uum				DUDU MUGAUGAUAU				
1	routeiom	TOTOTOM	/	Normer or one of a	Dobritom	Schoolon	DOTINION	Indoion	METHERIOM	ononincion	CHONONION	CHONOIGH				/		13
			1002202020	LANTHANI								1.		\	and the second se	Copyright © 19		
lativ	ve atomic ma	3. No. 4, 667-68 ass is shown	with five	-	~			-	~		64 157.25		-					-
lide	es, the value tes the mass m	s. For elements have no stable ralue enclosed in brackets as number of the longest-lived ment		La	Ce	Pr	Nd	Pm PROMETHIUM	Sm	EUROPIUM			Dy Dysprosium	HOLMIUM	Er	Тт	Yb	LUTE
we		teristic terrestrial isotopic r these an atomic weight is		ACTINIDE	VERUUM	- reweiver might		- Nome mich	UNIVERSION	CONTRACTOR	ON OUNCERION	TENDIUM	o ronnooium	THOUM OM	LINDIUM	HIGHOM	TENDIUM	LOIE
npo				89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cſ	Es	Fm	Md	No	L

PERIODIC TABLE OF THE ELEMENTS IN THE EARLY UNIVERSE

 $\lambda = \lambda$

18 VIIIA

He

HELIUM

2

4.0026

- First "galaxies" appear at 100 million years
 - Gravity has to overcome gas pressure ("Jeans mass")
 - First "micro-galaxies" contain $10^6 M_{\odot}$ of gas

- First stars and black holes?
 - Must deflate its pressure not to be stuck as a cloud
 - radiation via excitations of molecules
 - Today: CO, H_2O (T=5K)

- First "galaxies" appear at 100 million years
 - Gravity has to overcome gas pressure ("Jeans mass")
 - First "micro-galaxies" contain $10^6 M_{\odot}$ of gas

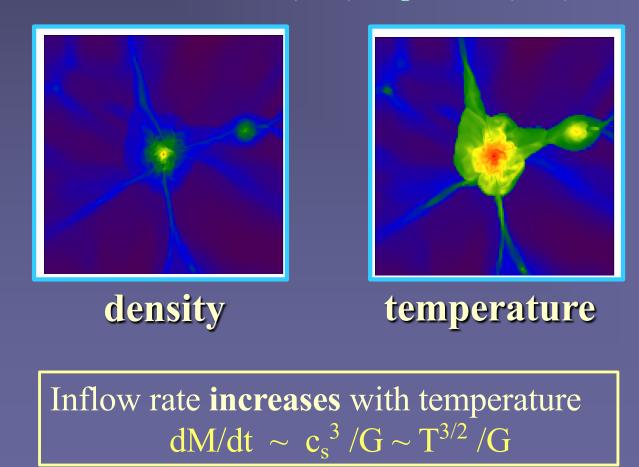
- First stars and black holes?
 - Must deflate its pressure not to be stuck as a cloud
 - radiation via excitations of molecules
 - Today: CO, H_2O (T=5K)
 - Protogalaxies with H_2 : T=100 K
 - Protogalaxies with only H atoms: $T=10^4 K$

- First "galaxies" appear at 100 million years
 - Gravity has to overcome gas pressure ("Jeans mass")
 - First "micro-galaxies" contain $10^6 M_{\odot}$ of gas

- First stars and black holes?
 - Must deflate its pressure not to be stuck as a cloud
 - radiation via excitations of molecules
 - Today: CO, H_2O (T=5K)
 - Protogalaxies with H_2 : T=100 K
 - Protogalaxies with only H atoms: $T=10^4 K$

H₂ molecule controls fate of first stars/BHs

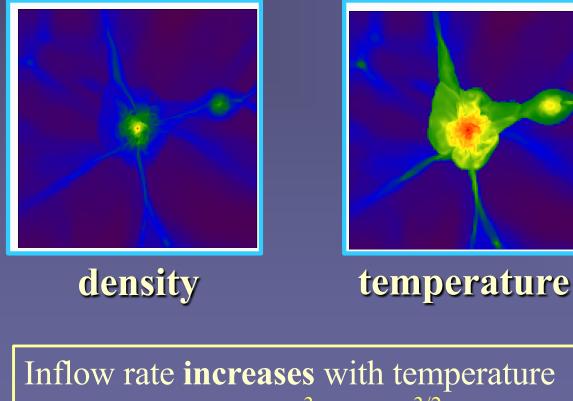
H₂ abundance depends on local radiation


• Formation: $H + e^- \rightarrow H^- + \gamma(IR)$ $H^- + H \rightarrow H_2 + e^-$ **...**

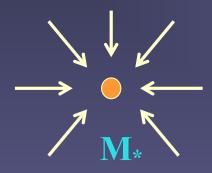
• Destruction: $H_2 + \gamma(UV) \rightarrow (^*)H_2$ $(^*)H_2 \rightarrow H + H + \gamma(IR)$

Strong Lyman-Werner radiation (~12eV) suppresses H2 fraction and cooling Jemma Wolcott-Green (PhD thesis 2019)

Realized in synchronized formation of a pair of protogalaxies $\Delta t_{sync} < 4 \text{ Myr}$ and $d_{sep} < 1000 \text{ light-yr}$ in ~10⁻⁴ of protogalaxies


3D simulation of protogalaxy collapse - no free parameters - $M_{galaxy} \approx 10^{6-8} M_{\odot}$ $t_{coll} \approx 300 Myr$ Fernandez et al. (2014), Regan et al. (2017)

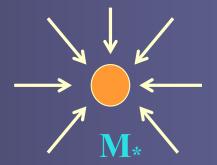
3D structure of protogalaxy collapse calculation - no free parameters -


 $M_{galaxy} \approx 10^{6-8} M_{\odot}$ $t_{coll} \approx 300 Myr$

Fernandez et al. (2014), Regan et al. (2017)

 $dM/dt \sim c_s^3 / G \sim T^{3/2} / G$

What happens in the (unresolved) core?

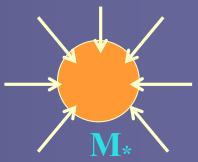

present-day galaxy abundant CO, H_2O

 $T \approx 5 \text{ K}$

 $\dot{M} \approx 10^{-5} M_{\odot} \text{ yr}^{-1}$

result: a star $M_* \approx 1-10 M_{\odot}$

0.1% chance of BH


 $10^{6} \mathrm{M}_{\odot} \mathrm{protogalaxy}$ abundant H_{2}

 $T \approx 200 \text{ K}$

 $\dot{M} \approx 10^{-3} M_{\odot} \text{ yr}^{-1}$

result: massive star $M_* \approx 10\text{-}500 \ M_{\odot}$

50% chance of BH

 $10^8 M_{\odot}$ protogalaxy no H₂ - cooling by H

 $T \approx 10,000 \text{ K}$

 $\dot{M} \approx 1 M_{\odot} \text{ yr}^{-1}$

supermassive star $M_{*} \approx 10^{5-6} M_{\odot}$

 \rightarrow Massive BH

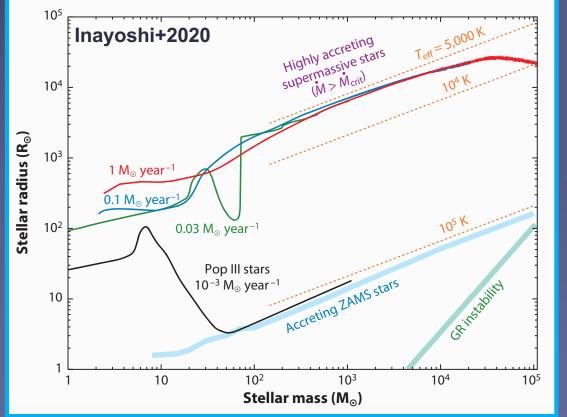
Direct collapse

→ Protostar must be building up faster than it can contract (Kelvin-Helmholtz timescale ~ 10⁴ years)

 \rightarrow Leave behind massive 10⁵⁻⁶ M_{\odot} BHs via GR instability

Hosokawa et al. 2012, 2015; Haemmerlé et al. 2018

SMS: achieved by rapid gas accretion


Normal star: $M \gtrsim 10^3 M_{\odot}$ prevented by UV radiation

isothermal collapse via Ly α cooling: $M_{acc} \approx c_s^3/G \approx 0.1-1 \ M_{\odot} \ yr^{-1}$

cf. inflow rate with H₂ cooling: $c_s^3/G \approx 10^{-3} M_{\odot} yr^{-1}$ cf. molecular clouds in ISM: $c_s^3/G \approx 10^{-5} M_{\odot} yr^{-1}$ Direct collapse

(rapid inflow \rightarrow supermassive star \rightarrow MBH)

- → Protostar must be building up faster than it can contract (Kelvin-Helmholtz timescale ~ 10⁴ years)
- \rightarrow Leave behind massive 10⁵⁻⁶ M_{\odot} BHs via GR instability

Hosokawa et al. 2012, 2015; Haemmerlé et al. 2018

SMS: achieved by rapid gas accretion

Normal star: $M \gtrsim 10^3 M_{\odot}$ prevented by UV radiation

isothermal collapse via Ly α cooling: $M_{acc} \approx c_s^3/G \approx 0.1-1 \ M_{\odot} \ yr^{-1}$

cf. inflow rate with H₂ cooling: $c_s^3/G \approx 10^{-3} M_{\odot} yr^{-1}$ cf. molecular clouds in ISM: $c_s^3/G \approx 10^{-5} M_{\odot} yr^{-1}$

How to make massive BHs (fast)?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

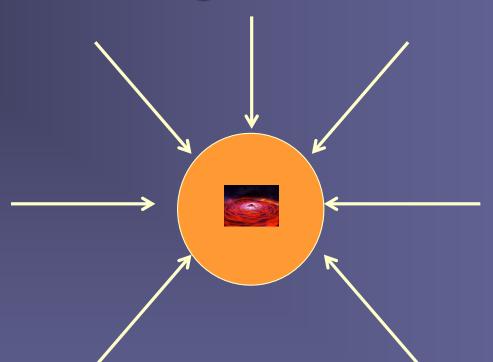
• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

How to make massive BHs (fast)?

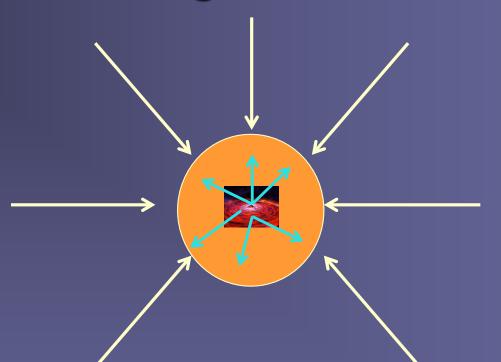
• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

solution: rapid inflow in large but pristine H_2 –free protogalaxy

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

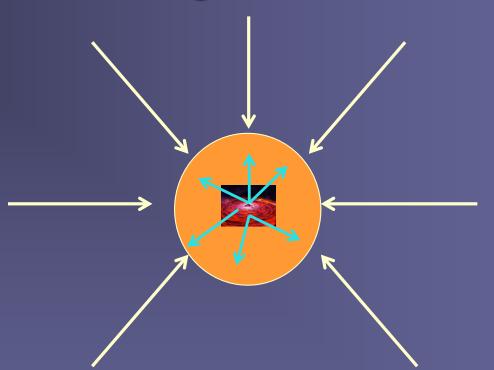

How to make massive BHs (fast)?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars


solution: rapid inflow in large but pristine H_2 –free protogalaxy

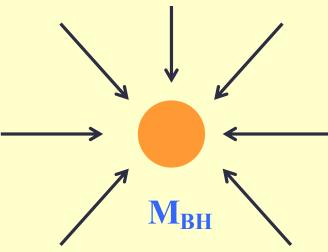
• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

Feeding Black Holes



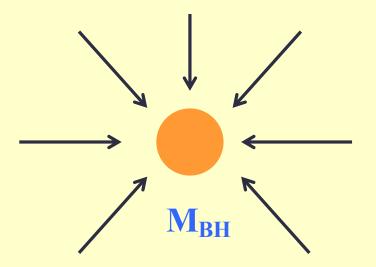
Feeding Black Holes

inward gravity vsoutward radiation $L \sim G\dot{M}_{bh}M_{bh}/R_{bh}$


Feeding Black Holes

inward gravity vsoutward radiation $L \sim G\dot{M}_{bh}M_{bh}/R_{bh}$

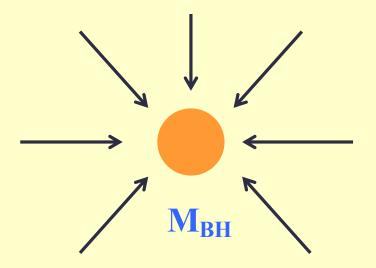
there is a universal maximum "Eddington" feeding rate



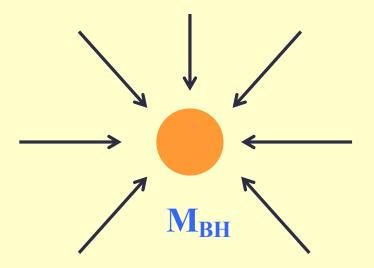
dM_{gas} **Fueling rate:** dt **BH growth rate:** $\frac{dM_{BH}}{dt} = \varepsilon \frac{dM_{gas}}{dt}$ **BH luminosity:** $L_{BH} = (1 - \varepsilon) \frac{dM_{gas}c^2}{dt}$ $F_{rad} = const \times \frac{L_{BH}}{4\pi r^2} = const \times \frac{\dot{M}_{BH}}{r^2} \qquad \qquad L_{BH} = \frac{(1-\varepsilon)}{\varepsilon} \frac{dM_{BH}c^2}{dt}$

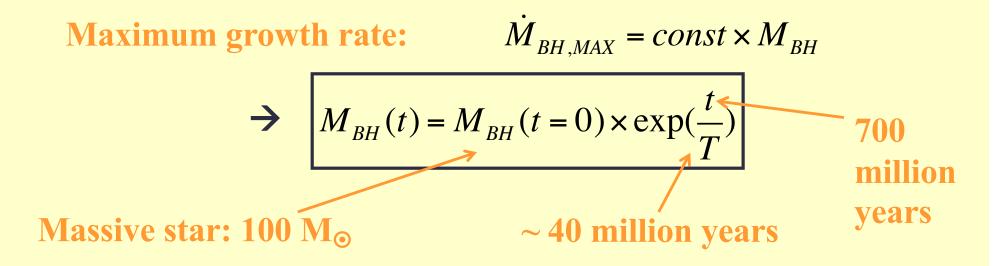
Maximum growth rate:

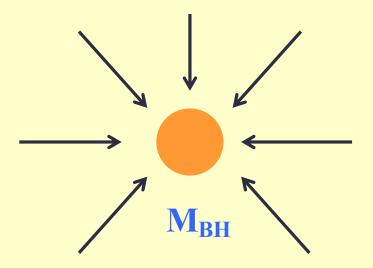
Outward force:

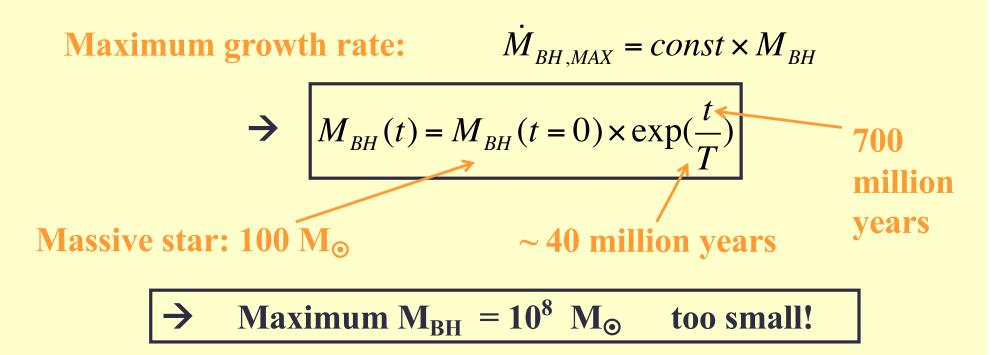

$$F_{rad} = F_{grav} = \frac{GM_{BH}}{r^2} \rightarrow \dot{M}_{BH,MAX} = const \times M_{BH}$$
$$M_{BH}(t) = ???$$

Maximum growth rate:


 $\dot{M}_{BH,MAX} = const \times M_{BH}$


$$\rightarrow M_{BH}(t) = ???$$




Maximum growth rate: $\dot{M}_{BH,MAX} = const \times M_{BH}$

→
$$M_{BH}(t) = M_{BH}(t=0) \times \exp(\frac{t}{T})$$

Spherically symmetric radiation + hydrodynamics simulations Inayoshi, ZH, Ostriker (2016), Sakurai, Inayoshi, ZH (2017), Hu et al. (2022a,b)

I. Radiation trapped in opaque gas:

 $L \sim G\dot{M}_{bh}M_{bh}/R_{bh}$

Spherically symmetric radiation + hydrodynamics simulations Inayoshi, ZH, Ostriker (2016), Sakurai, Inayoshi, ZH (2017), Hu et al. (2022a,b)

R_{trap}

I. Radiation trapped in opaque gas:

 $\overline{V_{in}} > C/\tau$

 $L \sim G\dot{M}_{bh}M_{bh}R$ $\dot{L} \sim G\dot{M}_{bh}M_{bh}R$

Spherically symmetric radiation + hydrodynamics simulations Inayoshi, ZH, Ostriker (2016), Sakurai, Inayoshi, ZH (2017), Hu et al. (2022a,b)

R_{trap}

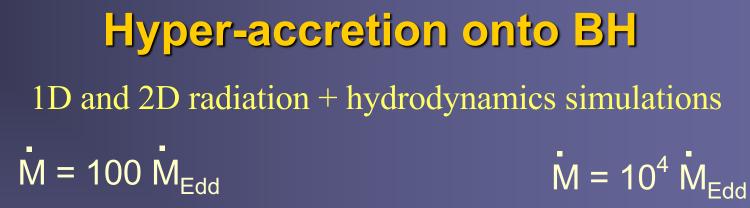
I. Radiation trapped in opaque gas:

 $V_{in} > c/\tau$

 $L \sim G\dot{M}_{bh}M_{bh}/R_{bh}$ $L \sim G\dot{M}_{bh}M_{bh}/R_{tra}$

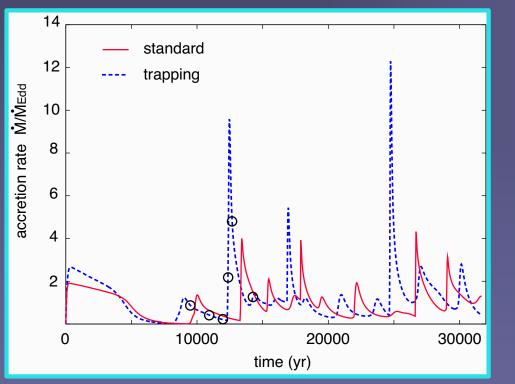
Spherically symmetric radiation + hydrodynamics simulations Inayoshi, ZH, Ostriker (2016), Sakurai, Inayoshi, ZH (2017), Hu et al. (2022a,b)

I. Radiation trapped in opaque gas:


 $L \sim G\dot{M}_{bh}M_{bh}/R_{bh}$ $L \sim G\dot{M}_{bh}M_{bh}R_{tra}$

II. If fueling is extremely rapid (≥ 500 × Eddington rate) then emerging radiation cannot stop inflow:
the BH swallows everything (otherwise, episodic accretion)

trap


 $v_{\rm H} < c/\tau$

 $V_{in} > c/\tau$

10⁵

10⁴

 10^3 10^3 10^2

o⁵

Accretion episodic due to heating average rate is very low (sub-Eddington)

Accretion is steady matches feeding rate (gas free-falls onto BH)

Toy model for steady hyper-accretion Sakurai, Inayoshi & ZH (2017)

- Infalling gas neutral \rightarrow Eddington luminosity irrelevant
- Consider a toy model: geometrically thin, optically thick spherical shell around a point source, driven by radiation force into a rapidly collapsing medium

$$\frac{\mathrm{d}}{\mathrm{d}t}(M_{\mathrm{sh}}\dot{R}_{\mathrm{sh}}) = \frac{L}{c} - \dot{M}(|v| + \dot{R}_{\mathrm{sh}}) - \frac{GM_{\mathrm{BH}}M_{\mathrm{sh}}}{R_{\mathrm{sh}}^2}$$

$$\frac{\mathrm{d}M_{\mathrm{sh}}}{\mathrm{d}t} = \dot{M}\left(1 + \frac{\dot{R}_{\mathrm{sh}}}{|v|}\right)$$

How to make massive BHs (fast)?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

solution: rapid inflow in large but pristine H_2 –free protogalaxy

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

• Method 3: Merge together many black holes problem: too few mergers

How to make massive BHs (fast)?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

solution: rapid inflow in large but pristine H_2 –free protogalaxy

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

solution: rapid inflow onto BH in pristine H₂-free protogalaxy

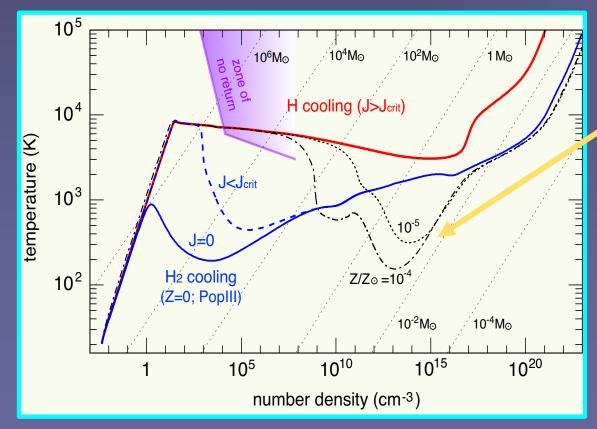
• Method 3: Merge together many black holes problem: too few mergers

How to make massive BHs (fast)?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

solution: rapid inflow in large but pristine H₂ –free protogalaxy

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low


solution: rapid inflow onto BH in pristine H₂-free protogalaxy

• Method 3: Merge together many black holes problem: too few mergers

Runaway Collisions

What happens in atomic-cooling halo if there is prior star-formation and corresponding metal-enrichment? (i.e. in more typical case)

Dense stellar cluster forms \rightarrow **core collapse** \rightarrow **IMBH with** 10³-10⁴ M_{\odot}

key: fragmentation at very high density (~10¹⁰ M_o pc⁻³)

- → Ultra-dense star cluster
 → Runaway core collapse
 → VMS
- \rightarrow IMBH

Omukai, ZH, Schneider 2008 Devecchi & Volonteri 2009 Katz+2015, Sakurai+2017 Reinoso+2018, Boekholt+2018 Alister Seguel+2020, Das+2020

Variant: "Stellar Bombardment"

Tagawa, ZH & Kocsis (2020)

atomic-cooling halo with modest $Z\sim 10^{-4} Z_{\odot}$

Numerical N-body + gas toy model to follow time-evolution for 3 Myr ("1-dimensional N-body simulation")

Dark matter halo

Central star

- m_{cent} grows via
- stellar accretiongas accretion

Collapsing gas

is influenced by

- gravitational potential
- photo-ionization feedback

Surrounding stars (N-body)

form at $r_{Q=1}$

- r_i evolves via
- stellar dynamical friction
- gas dynamical friction
- gas accretion
- m_i evolves via

- gas accretion

- collisions

Results:

- Central star grows via <u>mergers</u> before it contracts
- Feedback loop: increased radius
 ←→ more rapid mergers
- "Bombardment" different from runaway due to mass segregation
- <u>Critical density</u>: $\rho \gtrsim 10^{8-9} \text{ M}_{\odot} \text{ pc}^{-3}$ (cf. $\rho \sim 10^7 M_{\odot} \text{ pc}^{-3}$ in M32)

 \rightarrow SMS with 10⁵⁻⁶ M_{\odot}

BH growth by cosmological Mergers and Acquisitions

<u>1 billion yr:</u>

A single black hole, with mass of $10^9 M_{\odot}$

100 million yr:

several hundred stellar-mass black holes, each with $100 M_{\odot}$

Galaxy merger tree – follows from cosmological theory

The holes grow by both *accretion* and by many *mergers*

Many holes are ejected into space and lost

lucky early BH at 60-70 Myr
 no recoil -- unequal mass at merger

Takamitsu Tanaka PhD thesis

How to make massive BHs fast?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

solution: rapid inflow in large but pristine H₂ –free protogalaxy

• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

solution: rapid inflow onto BH in pristine H₂-free protogalaxy

• Method 3: Merge together many stellar black holes problem: too few mergers

How to make massive BHs fast?

• Method 1: Collapse gas directly into a massive BH problem: cloud fragments and forms stars

solution: rapid inflow in large but pristine H₂ –free protogalaxy

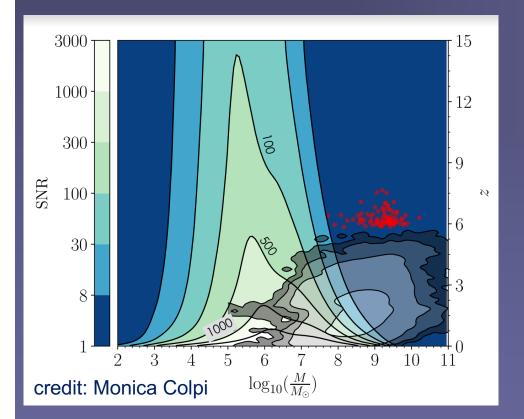
• Method 2: Grow a single stellar-mass BH by accretion problem: accretion rate low

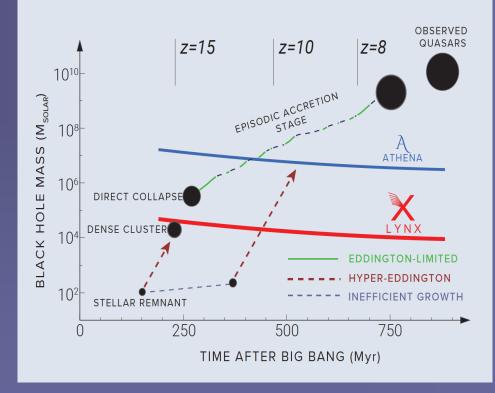
solution: rapid inflow onto BH in pristine H₂-free protogalaxy

• Method 3: Merge together many stellar black holes problem: too few mergers

solution: ultra-dense clusters, and/or lucky ultra-early seed

1. Observations: types of black holes in the universe

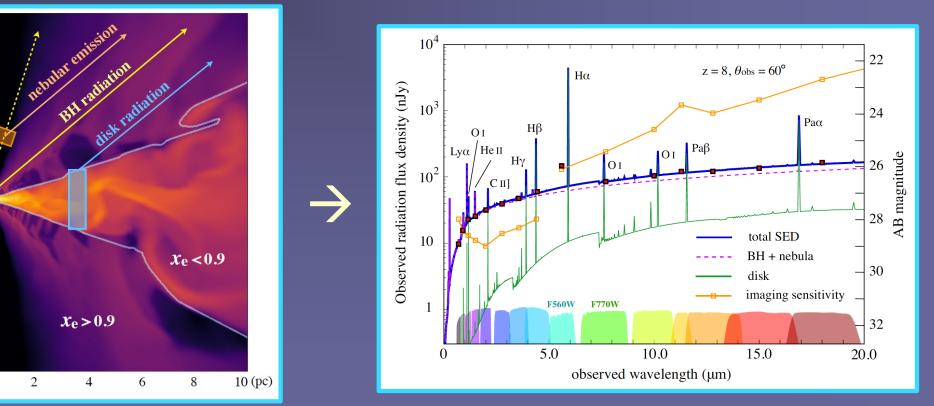

2. Theory: where do massive black holes come from?


3. The Future: how to distinguish different pathways?

Looking for early black hole growth

Growth by mergers: LISA

Growth by accretion: LynX



Emerging spectrum

2D radiation-hydro simulations for hyper-accretion

Hu, Inayoshi, ZH, Quataert, Kuiper 2022a; Inayoshi+2022 CLOUDY post-processing of 0.1-100pc around 10^{5-6} M_{\odot} BH accreting 1 M_{\odot}/yr

 $L_{bol} \sim 10^{45} \text{ erg/s}$

rapidly accreting BHs detectable to z<17 or z<13 expected abundance: 1 per 10 NIRCam fields

Distinguishing signatures

Strong Balmer lines

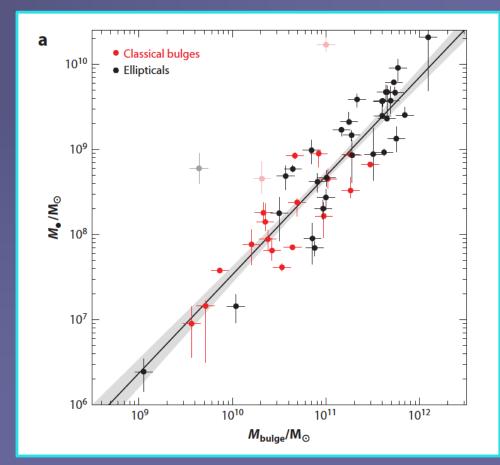
collisional excitations of n \geq 3 levels from n=2 populated by trapped Ly α due to high column density of the dense inner disk (0.1-1 pc) H α rest-frame EW~1300Å (~6-7 times stronger than low-z quasars) H β rest-frame EW~100Å (~2-3 times stronger than low-z quasars)

• Red colors in broad bands, due to strong $H\alpha$

broad-band selection by multiband photometry with NIRCam & MIRI F356W – F560W > 1 (7 < z < 8) F444W – F770W > 1 (9 < z < 12)

OI lines (1304, 8446, 11287Å) excited by Lyβ fluorescence coinciding with OI 3d (Lyβ trapped but OI cascade lines (3d → 3p, 3p → 3s, 2s → 2s) escape detectable by NIRSpec

BH mass to host galaxy mass ratio

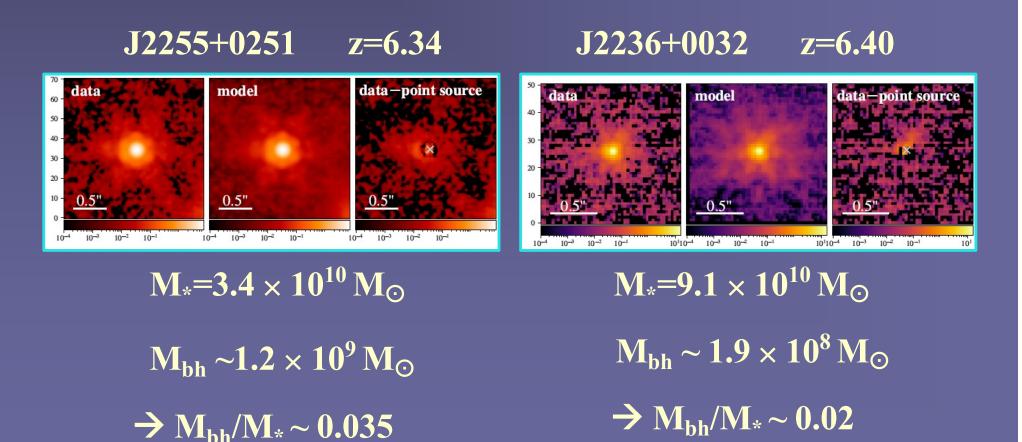

Visbal & ZH 2018; Scoggins, ZH & Wise 2023

In rapid formation/growth models, massive BHs are born as extreme outliers in BH – galaxy mass relation

Nearby galaxies: $M_{bh}/M_* \sim few \times 10^{-3}$

Early massive seed BHs: $M_{bh}/M_* \sim \infty$

stay outliers for few 100 Myr when $M_{bh} \sim 10^7 \, M_{\odot}$ and $M_{bh}/M_* > 1$



Kormendy & Ho (2013)

BH mass to host galaxy mass ratio

Ding et al. 2023; arxiv:2211.14329, Nature (submitted)

Extended starlight from host galaxies detected for the first time JWST images for two z~6.4 quasars

Conclusions

- H₂ molecules control early massive black hole formation.
 Chemically pristine primordial gas falls into protogalaxies at accretion rates 100-10⁵ times higher than in present-day
- Yields massive $10^6 M_{\odot}$ BHs via supermassive star or hyperaccretion onto stellar-remnant BH within first few 100 Myr
- In ultra-dense star clusters, and/or with the help of gas disk torques, black holes can also merge efficiently
- Combination of gravitational waves (probing mergers) and optical/X-ray telescopes (probing accretion) offer diagnostics of early black hole assembly

Thanks!